Race to 1 Again LightOJ - 1038

Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case begins with an integer N (1 ≤ N ≤ 105).

Output

For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.

Sample Input

3

1

2

50

Sample Output

Case 1: 0

Case 2: 2.00

Case 3: 3.0333333333

要求将一个数变成1,每次可以除去它的任意一个因子,问你次数的期望。

设 f [ i ] 为 i 的期望

那么 显然 f [ 1 ] =1  , f [ i ] =   ( (  k + f [ i ] )   /   x    ) + 1

   k 代表 他所有因子的期望之和 (不包括本身) 

  x 代表他所有因子的个数(包括本身)

为啥最后要加一  ,因为 之所以 期望变成  所有因子期望和 / x 是因为已经进行了一次操作 ,期望最少为1

#include<bits/stdc++.h>
using namespace std;
double f[100010];
int  main()
{
   memset(f,0,sizeof(f));
   for(int i=2;i<=100000;i++)
   {
       double x=0;
       for(int j=1;j*j<=i;j++)
       {
           if(i%j==0)
           {
            x++;
            f[i]+=f[j];
            if(i/j!=j)
            {
                x++;
                f[i]+=f[i/j];
            }
           }
       }
       f[i]=(f[i]+x)/(x-1.0);
   }
   int n,t;
   scanf("%d",&t);
   for(int oo=1;oo<=t;oo++)
   {
    scanf("%d",&n);
    printf("Case %d: %.6lf\n",oo,f[n]);
   }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值