Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input
3
1
2
50
Sample Output
Case 1: 0
Case 2: 2.00
Case 3: 3.0333333333
要求将一个数变成1,每次可以除去它的任意一个因子,问你次数的期望。
设 f [ i ] 为 i 的期望
那么 显然 f [ 1 ] =1 , f [ i ] = ( ( k + f [ i ] ) / x ) + 1
k 代表 他所有因子的期望之和 (不包括本身)
x 代表他所有因子的个数(包括本身)
为啥最后要加一 ,因为 之所以 期望变成 所有因子期望和 / x 是因为已经进行了一次操作 ,期望最少为1
#include<bits/stdc++.h>
using namespace std;
double f[100010];
int main()
{
memset(f,0,sizeof(f));
for(int i=2;i<=100000;i++)
{
double x=0;
for(int j=1;j*j<=i;j++)
{
if(i%j==0)
{
x++;
f[i]+=f[j];
if(i/j!=j)
{
x++;
f[i]+=f[i/j];
}
}
}
f[i]=(f[i]+x)/(x-1.0);
}
int n,t;
scanf("%d",&t);
for(int oo=1;oo<=t;oo++)
{
scanf("%d",&n);
printf("Case %d: %.6lf\n",oo,f[n]);
}
}