最大长方形(二)

最大长方形(二)

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 4
描述

Largest Rectangle in a Histogram

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 


Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
输入
The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
输出
For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
样例输入
7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0
样例输出
8
4000
来源

Ulm Local 2003



题意  :找最大长方形,显然暴力肯定超时,这个时候应该用记忆化的方法。h 数组存高度  ,l数组存连续比当前高度高的最左边的位置   r数组存连续比当前高度高的最右边的位置 


#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<queue>;
#include<stack>;
#include <iomanip>;
#define INF 0x3f3f3f3f
using namespace std;
long long h[110000];
int l[110000];
int r[110000];
int main()
{
   int n;
   int e,i;
   while(~scanf("%d",&n)&&n)
   {
       for( i=1;i<=n;i++)
       {
           scanf("%lld",&h[i]);
       }
       for(i=1;i<=n;i++)
       {
          l[i]=i;   //初始化
          r[i]=i;
       }
       for( i=1;i<=n;i++)
       {
           e=i-1;   
           while(h[i]<=h[e])
           {
             l[i]=l[l[e]];         
             e=l[i]-1;
           }
       }
         for( i=n;i>=1;i--)    //如果还是1到n会超时 
       {
            e=i+1;
           while(h[i]<=h[e])
           {
             r[i]=r[r[e]];
             e=r[i]+1;
           }
       }
       long long ans=0;
       for( i=1;i<=n;i++)
       {
           if(h[i]*(r[i]-l[i]+1)>ans)
            ans=h[i]*(r[i]-l[i]+1);
       }
       printf("%lld\n",ans);
   }
}



在Matlab中,可按以下步骤在轮廓的值图像`binary_img`里找到长方形: 1. **连通区域分析**:利用`bwlabel`函数标记值图像中的连通区域,再用`regionprops`函数计算每个连通区域的属性。 2. **筛选长方形区域**:依据长方形的属性特征(如长宽比、矩形度等)筛选出可能的长方形区域。 示例代码如下: ```matlab % 假设已经有值图像 binary_img % 标记连通区域 [labeledImage, numObjects] = bwlabel(binary_img); % 计算每个连通区域的属性 props = regionprops(labeledImage, 'Area', 'BoundingBox', 'Perimeter', 'Extent'); % 定义筛选条件 minArea = 100; % 最小面积 maxArea = 10000; % 最大面积 minAspectRatio = 0.5; % 最小长宽比 maxAspectRatio = 2; % 最大长宽比 minExtent = 0.8; % 最小矩形度 % 筛选长方形区域 rectangleIndices = []; for i = 1:numObjects area = props(i).Area; boundingBox = props(i).BoundingBox; aspectRatio = boundingBox(3) / boundingBox(4); extent = props(i).Extent; % 检查是否满足长方形的条件 if area >= minArea && area <= maxArea && ... aspectRatio >= minAspectRatio && aspectRatio <= maxAspectRatio && ... extent >= minExtent rectangleIndices = [rectangleIndices, i]; end end % 显示筛选出的长方形区域 figure; imshow(binary_img); hold on; for i = 1:length(rectangleIndices) index = rectangleIndices(i); boundingBox = props(index).BoundingBox; rectangle('Position', boundingBox, 'EdgeColor', 'r', 'LineWidth', 2); end hold off; ``` 上述代码先对值图像进行连通区域分析,接着计算每个连通区域的属性,然后依据面积、长宽比和矩形度等条件筛选出可能的长方形区域,最后在图像上绘制出筛选出的长方形区域。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值