机器学习4-多元线性回归

本文介绍了多元线性回归模型的基本概念,展示了如何使用Python进行数据预处理、特征编码,并在实际案例中(如预测公司利润)运用该模型进行训练和预测。结果显示,预测结果与实际值基本相符,证实了模型的有效性。

多元线性回归(Multiple Linear Regression)是线性回归的一种扩展形式,用于建立因变量与多个自变量之间的关系。在简单线性回归中,我们考虑一个因变量和一个自变量之间的线性关系,而多元线性回归允许我们考虑多个自变量对因变量的影响。

一般的多元线性回归模型的数学表达式如下:

Y=\beta_{0}+\beta_{1}X_{1}+\beta_{2}X_{2}+...++\beta_{n}X_{n}+\varepsilon

其中:

  • Y 是因变量(要预测的目标)。
  • X1​,X2​,…,Xn​ 是自变量(特征)。
  • β0​ 是截距(模型在X1​,X2​,…,Xn​ 都为0时的预测值)。
  • β1​,β2​,…,βn​ 是各自变量的回归系数,表示自变量对因变量的影响。
  • ε 是误差项,表示模型无法捕捉到的影响因素和随机误差。

多元线性回归的目标是找到合适的回归系数 β0​,β1​,…,βn​ 来最小化实际观测值 Y 与模型预测值之间的误差,通常使用最小二乘法进行优化。

模型训练后,可以使用这个模型进行预测。当有新的自变量值 X</

### 线性回归基础知识与入门教程 线性回归是一种用于建模特征(自变量)响应变量(因变量)之间线性关系的方法[^4]。它广泛应用于数据分析机器学习领域,能够帮助我们理解预测连续型目标变量。 #### 1. 基本概念 简单线性回归涉及单个输入变量 \(x\) 输出变量 \(y\) 的关系,通常表示为: \[ y = w_1x + b \] 其中 \(w_1\) 是权重(斜率),\(b\) 是偏置项(截距)。对于多个输入变量的情况,则扩展为多元线性回归形式: \[ y = w_1x_1 + w_2x_2 + \dots + w_nx_n + b \] 如果存在非线性关系,可以通过引入高次幂或其他变换来拟合更复杂的模式,例如二次项或三次项的关系[^1]。 #### 2. 使用 Python 实现线性回归 `scikit-learn` 提供了一个强大的工具 `LinearRegression()` 来快速构建线性回归模型。以下是基本用法示例: ```python from sklearn.linear_model import LinearRegression import numpy as np # 创建样本数据 X = np.array([[1], [2], [3], [4], [5]]) y = np.array([2, 4, 6, 8, 10]) # 初始化并训练模型 model = LinearRegression() model.fit(X, y) # 输出回归系数截距 print(f"回归系数: {model.coef_[0]}") # 回归系数对应于 w1 print(f"截距: {model.intercept_}") # 截距对应于 b ``` 通过上述代码,我们可以轻松获取模型的参数,并进一步利用这些参数进行预测操作。 #### 3. 学习资源推荐 为了深入掌握线性回归的知识体系,建议参考 Andrew Ng 教授在斯坦福大学开设的《Machine Learning》课程[^2]。该课程不仅涵盖了理论基础,还包括实际案例的应用方法,非常适合初学者逐步提升自己的技能水平。 此外,《Python从零到壹》系列文章也提供了详尽的内容梳理,特别是关于回归分析的部分,包含了大量实例说明以及代码演示。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dracularking

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值