笛卡尔轨迹规划之齐次变换矩阵与欧拉角、四元数的转化

一、笛卡尔轨迹规划需求

        笛卡尔轨迹规划本质就是我们对机械臂的末端位置和姿态进行规划,其实也就是对末端坐标系的位姿进行规划。我们清楚末端坐标系的位姿是可以用齐次变换矩阵T来表示的,但这样表示的话,并不利于我们去做规划,所以在进行轨迹规划之前,我们需要先将对应的齐次变化矩阵转化成位姿向量去表示,也就是转化成:

        其中px,py和pz就是末端的位置,这个是比较好处理的,就是原点的移动,规划的思路就是插值,求解就可以了。

        但φx,φy,φz表示的是末端的姿态,这个相对难处理一点。一般而言,我们有两种计算方法,一种是转化成φx,φy,φz计算,也就是欧拉角。另一种就是转化成【w,x,y,z】的四元数计算。两种方法各有特点,目前我也只是了解了这些方法,但具体还没有做应用和比较。

        因为我们一般而言已知的就是起点和终点的齐次变化矩阵,可以用以下这个式子表示:

        后面我们要计算的姿态就是用标红的框框里面的数据去计算。

二、齐次变换矩阵与欧拉角

        欧拉角的表示方法就是让坐标系先绕x轴转一个φx,再绕y轴转一个φy,最后绕z轴转一个φz,进而得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值