The Triangle
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 53441 Accepted: 32282
Description
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output
Your program is to write to standard output. The highest sum is written as an integer.
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
Source
IOI 1994
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
int a[100][100];
int b[100];
void f(int t[],int x){
for(int i = 0;i < x; ++i){
b[i] = max(t[i] + b[i] , t[i] + b[i+1]);
}
}
int main(){
cin >> n;
for(int i = 0;i < n;++i){
for(int j = 0;j <= i; ++j){
cin >> a[i][j];
}
}
memset(b,0,sizeof(b));
for(int i = n;i > 0; --i){
f(a[i-1],i);
}
cout << b[0] << endl;
return 0;
}

本文介绍了一个算法问题,即计算从三角形顶部到底部的最大路径和,路径只能沿对角线向下移动。通过逆向从底部向上计算的方式,利用动态规划思想高效地解决了该问题。
3081

被折叠的 条评论
为什么被折叠?



