深度学习常见问题每日学习

部署运行你感兴趣的模型镜像

1.Dataset 和 Dataloader 的区别。

都是来自工具pytorch。

Dataset :dataset 来自torch.utils.data.Dataset,是代表数据的基类,我们自定义的数据类可以通过继承和重写这个抽象类的__getitem__和__len__函数实现。

__getitem__:通过index访问数据,能够同时返回数据和类别对应的标签,这里数据和标签为tensor类型。

_len__:获取数据的个数。

Dataloader:dataloader是处理模式输入数据的一个工具类。组合了数据集加采样器,并在数据集上提供单线程和多线程的可迭代对象。

epoch:      所有的训练样本输入到模型中称为一个epoch;
iteration:  一批样本输入到模型中,成为一个Iteration;
batchszie:批大小,决定一个epoch有多少个Iteration;
迭代次数(iteration)=样本总数/批尺寸(batchszie)

函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, 
    shuffle=False, sampler=None, 
    batch_sampler=None, num_workers=0, 
    collate_fn=None, pin_memory=False, 
    drop_last=False, timeout=0, 
    worker_init_fn=None, multiprocessing_context=None)

2.深度学习中常见的损失函数有那些?

[1]针对分类任务

--多分类任务的交叉熵损失函数:

--二分类任务的交叉熵损失函数:

--focal loss 解决难易样本数量不均衡问题和正负样本数量不均衡问题。

focal loss 存在的问题就是:

1.参数的选择对收敛有影响。

2.关注困难样本会导致过分关注噪声点、离群点,反而不易收敛。

[2]针对回归任务

--MAE损失(Mean Absolute Loss)也被称为L1loss,是以绝对误差作为度量。

--MSE损失(Mean Square Loss)也被称为L2Loss,是以误差的平方和作为度量。

异常值
MSE对异常值敏感,因为它的惩罚是平方的,所以异常值的loss会非常大。
MAE对异常之不敏感,

不妨设拟合函数为常数,那么MSE就相当于所有数据的均值(列出loss对c求导即可),而MAE相当于所有数据的中位数,所以会对异常值不敏感。

优化效率
MAE不可导而且所有的导数的绝对值都相同,优化时无法确定更新速度,
MSE可导,有closed-form解,只需要令偏导数为0即可。

如何选择
如果想要检测异常值则使用MSE,如果想学习一个预测模型则建议使用MAE,或者先进行异常值处理再使用MSE

--smooth L1 loss 

其中:𝑥=f(x)−y 为真实值和预测值的差值

--Huber Loss 也可以称为:Smooth Mean Absolute Error

为什么要使用 Huber Loss

使用MAE训练神经网络的一个大问题是它的持续大梯度,这可能会导致在使用梯度下降训练结束时丢失最小值。对于MSE,当损失接近其最小值时,梯度减小,使其更加精确。

在这种情况下,Huber损失是非常有用的,因为它在减小梯度的最小值附近弯曲。它比MSE对离群值更稳健。因此,它结合了MSE和MAE的优良性能。然而,Huber损失的问题是我们可能需要训练超参数delta,这是一个迭代过程。

--Log-Cosh Loss

Log-Cosh是一个回归损失函数,它比L2更平滑的损失函数。Log-cosh是预测误差使用的数学函数是双曲余弦的对数。公式如下:

L(y,y^p) = \sum ^{n} _{i=1} log (cosh (y_{i}^{p} - y_i) )

优点: 1. 该损失函数log(cosh(x)) 数学意义近似 (x^2)/2;其中,对于非常大的x 数学意义近似于 abs(x) - log(2);这里的数学意义表明:该函数的工作方式与均方差公式有点类似,该损失函数,具有Huber损失函数的所有优点,并且处处可微。

[3] 针对同类样本和不同样本之间差异的loss triplet loss

triplet loss的计算是基于一个三元组<a, p, n>计算同类样本和不同类样本之间的距离差,其中a表示选定的锚点,p表示与a同类别的样本,n表示与a不同类别的样本。

\alpha的作用:

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

                《人工智能深度学习入门到精通实战》课程主要就人工智能领域相关的深度学习基础、深度学习计算、卷积神经网络+经典网络、循环神经网络+RNN进阶、优化算法、计算机视觉和自然语言处理等,配套实战案例与项目全部基于真实数据集与实际任务展开,结合深度学习框架进行建模实战。                由浅入深,每一个理论搭配一个实验,引领学员浸泡式逐步掌握各项技能和实战项目,且侧重技能不同,学员的知识体系会更加全面课程大纲:第一章:深度学习基础-深度学习简介01.1-前置知识01.2-传统编程与数据编程01.3-深度学习起源01.4-深度学习崛起与发展01.5-深度学习成功案例01.6-深度学习特点 第二章:深度学习基础-Python基础02.1-PyTorch介绍与环境配置02.2-数据操作与创建Tensor02.3-算术操作、索引与改变形状02.4-线性代数、广播机制与内存开销02.5-Tensor和NumPy相互转换与Tensor on GPU02.6-实验01-创建和使用Tensor-102.7-实验01-创建和使用Tensor-202.8-梯度下降02.9-实验02-梯度下降-102.10-实验02-梯度下降-202.11-自动求梯度概念02.12-自动求梯度实例02.13-实验03-自动求梯度-102.14-实验03-自动求梯度-2 第三章:深度学习基础-线性回归03.1-线性回归讲解03.2-线性回归实例03.3-实验04-从零实现线性回归-103.4-实验04-从零实现线性回归-203.5-实验05-线性回归的简洁实现-103.6-实验05-线性回归的简洁实现-2 第四章:深度学习基础-softmax回归04.1-softmax回归04.2-实验06-FashionMNIST04.3-实验07-从零实现Softmax回归-104.4-实验07-从零实现Softmax回归-204.5-实验08-softmax回归的简洁实现 第五章:深度学习基础-多层感知机05.1-感知机05.2-多层感知机05.3-多层感知机与神经网络05.4-激活函数05.5-正向传播05.6-反向传播05.7-正向传播和反向传播05.8-批大小05.9-实验09-从零实现MLP05.10-实验10-MLP的简洁实现 第六章:深度学习基础-模型选择、欠拟合和过拟合06.1-训练误差和泛化误差06.2-模型选择06.3-欠拟合和过拟合06.4-权重衰减06.5-丢弃法06.6-实验11-多项式函数拟合实验06.7-实验12-高维线性回归实验-106.8-实验12-高维线性回归实验-206.9-实验13-Dropout 第七章:深度学习基础-数值稳定性和模型初始化07.1-数值稳定性和模型初始化-107.2-数值稳定性和模型初始化-207.3-实验14-房价预测案例-107.4-实验14-房价预测案例-207.5-实验14-房价预测案例-3 第八章:深度学习计算-模型构造08.1-模型构造-108.2-模型构造-208.3-模型构造-308.4-实验15-模型构造-108.5-实验15-模型构造-2 第九章:深度学习计算-模型参数的访问、初始化和共享09.1-模型参数的访问09.2-模型参数初始化和共享09.3-实验16-模型参数-109.4-实验16-模型参数-2 第十章:深度学习计算-自定义层与读取和储存10.1-不含模型参数的自定义层10.2-含模型参数的自定义层10.3-实验17-自定义层10.4-读取和储存10.5-GPU计算10.6-实验18-读取和储存  第十一章:卷积神经网络11.01-卷积神经网络11.02-卷积神经网络的组成层11.03-图像分类的局限性11.04-二维卷积层与卷积层11.05-卷积在图像中的直观作用11.06-实验19-二维卷积层11.07-填充与步幅11.08-卷积过程11.09-卷积层参数-111.10-卷积层参数-211.11-实验20-Pad和Stride11.12-多输入和输出通道11.13-实验21-多通道11.14-池化层11.15-实验22-池化层 第十二章:经典网络12.01-卷积神经网络12.02-实验23-LeNet模型12.03-深度卷积神经网络12.04-实验24-AlexNet模型12.05-使用重复元素的网络12.06-实验25-VGG模型12.07-网络中的网络12.08-实验26-NiN模型12.09-含并行连接的网络12.10-实验27-GoogLeNet模型12.11-批量归一化-112.12-批量归一化-212.13-实验28-批量归一化12.14-残差网络12.15-实验29-残差网络12.16-稠密连接网络12.17-实验30-稠密连接网络 第十三章:循环神经网络13.01-语言模型和计算13.02-n元语法13.03-RNN和RNNs13.04-标准RNN向前输出流程和语言模型应用13.05-vector-to-sequence结构13.06-实验31-语言模型数据集-113.07-实验31-语言模型数据集-213.08-实验32-从零实现循环神经网络-113.09-实验32-从零实现循环神经网络-213.10-实验32-从零实现循环神经网络-313.11-实验32-从零实现循环神经网络-413.12-实验33-简洁实现循环神经网络-113.13-实验33-简洁实现循环神经网络-2 第十四章:RNN进阶14.01-通过时间反向传播-114.02-通过时间反向传播-214.03-长短期记忆-114.04-长短期记忆-214.05-实验34-长短期记忆网络-114.06-实验34-长短期记忆网络-214.07-门控循环单元14.08-RNN扩展模型14.09-实验35-门控循环单元 第十五章:优化算法15.01-优化与深度学习15.02-局部最小值和鞍点15.03-提高深度学习的泛化能力15.04-实验36-小批量梯度下降-115.05-实验36-小批量梯度下降-215.06-动量法-115.07-动量法-215.08-实验37-动量法15.09-AdaGrad算法与特点15.10-实验38-AdaGrad算法15.11-RMSrop算法15.12-实验39-RMSProp算法15.13-AdaDelta算法15.14-实验40-AdaDelta算法15.15-Adam算法15.16-实验41-Adam算法15.17-不用二阶优化讲解与超参数 第十六章:计算机视觉16.01-图像增广与挑战16.02-翻转、裁剪、变化颜色与叠加16.03-实验42-图像增广-116.04-实验42-图像增广-216.05-微调16.06-迁移学习16.07-实验43-微调-116.08-实验43-微调-216.09-目标检测16.10-边界框16.11-实验44-边界框16.12-锚框与生成多个锚框16.13-交并比16.14-实验45-生成锚框-116.15-实验45-生成锚框-216.17-标注训练集的锚框-116.18-标注训练集的锚框-216.19-实验46-标注训练集的锚框-116.20-实验46-标注训练集的锚框-216.21-实验46-标注训练集的锚框-316.22-输出预测边界框16.23-实验47-输出预测边界框-116.24-实验47-输出预测边界框-216.25-多尺度目标检测16.26-实验48-多尺度目标检测16.27-目标检测算法分类16.28-SSD与模型设计16.29-预测层16.30-损失函数16.31-SSD预测16.32-实验49-目标检测数据集16.33-实验50-SSD目标检测-116.34-实验50-SSD目标检测-216.35-实验50-SSD目标检测-316.36-实验50-SSD目标检测-416.37-实验50-SSD目标检测-516.38-实验50-SSD目标检测-6 第十七章:自然语言处理17.01-词嵌入和词向量17.02-神经网络模型17.03-跳字模型17.04-训练跳字模型17.05-连续词袋模型17.06-负采样17.07-层序softmax17.08-子词嵌入17.09-Fasttext模型17.10-全局向量的词嵌入17.11-实验51-word2vec之数据预处理-117.12-实验51-word2vec之数据预处理-217.13-实验52-word2vec之负采样-117.14-实验52-word2vec之负采样-217.15-实验53-word2vec之模型构建-117.16-实验53-word2vec之模型构建-217.17-实验54-求近义词和类比词-117.18-实验54-求近义词和类比词-217.19-实验55-文本情感分类RNN-117.20-实验55-文本情感分类RNN-217.21-实验55-文本情感分类RNN-317.22-实验55-文本情感分类RNN-417.23-TextCNN17.24-TextCNN流程17.25-实验56-文本情感分类textCNN-117.26-实验56-文本情感分类textCNN-217.27-Seq2Seq的历史与网络架构17.28-Seq2Seq的应用与存在的问题17.29-Attention机制与Bucket机制17.30-实验57-机器翻译之模型构建-117.31-实验57-机器翻译之模型构建-217.32-实验57-机器翻译之模型构建-317.33-实验58-机器翻译之训练评估-117.34-实验58-机器翻译之训练评估-217.35-实验58-机器翻译之训练评估-3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值