废话不多说,原理看这个:
代码如下
为了更好的处理多个bbox的IoU计算,对代码进行了改造
import math
import torch
from torch import Tensor
# author:wuliang
# time: 2022.5.27
def _upcast(t: Tensor) -> Tensor:
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by their
(x1, y1, x2, y2) coordinates.
Args:
boxes (Tensor[N, 4]): boxes for which the area will be computed. They
are expected to be in (x1, y1, x2, y2) format with
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
Returns:
Tensor[N]: the area for each box
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :

最低0.47元/天 解锁文章
8500

被折叠的 条评论
为什么被折叠?



