混合二进制粒子群优化与花授粉算法:特征选择新方案
1. 引言
在优化领域,许多算法被广泛应用于不同的问题,如基准优化函数、经济调度问题、特征选择、约束工程优化问题等。花授粉算法(FPA)因其在强化和多样化之间的平衡,在搜索行为方面表现出色。多样化有助于发现搜索空间的新区域,而强化则通过加强当前良好解决方案的信息进行局部搜索。
本文提出了一种基于混合二进制粒子群优化(PSO)和花授粉算法(FPA)的特征选择算法(BPSOFPA),并结合粗糙集方法。通过两种基于S形和V形传递函数的二进制方法,BPSOFPA在问题空间中具有强大的搜索能力,能够有效地获得最小特征子集。为了验证其性能,我们将该算法与一些强大的近期算法进行了比较,并使用UCI机器学习库中的18个数据集进行了实验。
2. 标准算法和概念概述
2.1 标准粒子群优化(PSO)
PSO是一种基于群体的优化算法,由Kennedy和Eberhart于1995年提出,旨在获得最优解。在PSO中,每个粒子会与其他粒子协作,以获取并保持搜索历史中的最佳位置,这个位置被视为每个粒子的个人最佳位置。而整个群体到目前为止找到的最佳位置则被定义为全局最佳位置。
为了获得优化问题的最优解,每个粒子会从全局最佳和个人最佳位置学习,并根据其速度移动。粒子群的运动在每次迭代时按以下公式计算:
[
V’_i = \omega V_i + c_1 r_1(t)[P^ _i(t) - P_i(t)] + c_2 r_2(t)[g^ (t) - P_i(t)]
]
[
P’_i = P_i(t) + V’_i
]
超级会员免费看
订阅专栏 解锁全文
1078

被折叠的 条评论
为什么被折叠?



