A3C经典源码

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np
import math
import random
import os
import gym

# Hyper Parameters
STATE_DIM = 4
ACTION_DIM = 2
STEP = 2000
SAMPLE_NUMS = 30

class ActorNetwork(nn.Module):

    def __init__(self,input_size,hidden_size,action_size):
        super(ActorNetwork, self).__init__()
        self.fc1 = nn.Linear(input_size,hidden_size)
        self.fc2 = nn.Linear(hidden_size,hidden_size)
        self.fc3 = nn.Linear(hidden_size,action_size)

    def forward(self,x):
        out = F.relu(self.fc1(x))
        out = F.relu(self.fc2(out))
        out = F.log_softmax(self.fc3(out))
        return out

class ValueNetwork(nn.Module):

    def __init__(self,input_size,hidden_size,output_size):
        super(ValueNetwork, self).__init__()
        self.fc1 = nn.Linear(input_size,hidden_size)
        self.fc2 = nn.Linear(hidden_size
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值