Distributed Training(Single Machine & Multi-GPU)

本文介绍了如何使用PyTorch的DistributedDataParallel模块进行多GPU分布式训练,涉及数据集配置、模型定义、优化器设置和损失函数,以及在多卡环境下的关键调整和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前使用的版本比较简单,不涉及到torch.multiprocessing的内容,只涉及到DistributedDataParallel的部分内容,这里给出一段code snippets以供参考:

### test_distributed_gpu.py
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import torch.distributed as dist################                      
from tqdm import tqdm

class dummyDataset(nn.Module):
    def __init__(self):
        super(dummyDataset, self).__init__()
        N = 50000
        self.data = torch.randn(N, 2048, 3)
        self.label = (torch.rand(N, 1) > 0.5).float().long()

    def __getitem__(self, item):
        jitter = torch.rand(2048,3)
        return self.data[item] + jitter, self.label[item]


    def __len__(self):
        return len(self.data)

class dummyModel(nn.Module):
    def __init__(self):
        super(dummyModel, self).__init__()
        self.layer1 = nn.Sequential(nn.Conv1d(3, 64, 1),
                                    nn.BatchNorm1d(64),
                                    nn.ReLU())
        self.layer2 = nn.Sequential(nn.Conv1d(64, 256, 1),
                                    nn.BatchNorm1d(256),
                                    nn.ReLU())
        self.fc = nn.Conv1d(256, 2, 1)

    def forward(self, data):
        """
        :param data:[B, 3, N]
        :return: [B, 2, N]
        """
        x = self.layer2(self.layer1(data))
        x = torch.max(x, dim=-1, keepdims=True)[0]
        x = self.fc(x).squeeze(-1)
        return x


if __name__ == '__main__':
    torch.manual_seed(1234)
    parser = argparse.ArgumentParser(description='DDP')
    parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')################
    parser.add_argument('--lr', type=float, help='lr')
    args = parser.parse_args()
    dist.init_process_group(backend='nccl')################
    torch.cuda.set_device(args.local_rank)################
    print(f'current rank -> {args.local_rank}')
    device = torch.device("cuda", args.local_rank)################

    ### configurating dataset
    train_dataset = dummyDataset()
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)################
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=16,
                                               num_workers=2,
                                               shuffle=False,################
                                               sampler=train_sampler)################
    ### configurating model
    model = dummyModel().to(device)
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])################

    ### configurating optimizer
    optimizer = optim.SGD(
        model.parameters(),
        lr=args.lr,
        momentum=0.98,
        weight_decay=0.000001,
    )
    scheduler = optim.lr_scheduler.ExponentialLR(
        optimizer,
        gamma=0.95,
    )

    ### configurating loss
    loss_func = nn.CrossEntropyLoss()

    model.train()
    for epoch in range(100):
        train_sampler.set_epoch(epoch)################
        data_iter = train_loader.__iter__()
        print(f"lr at epoch {epoch} -> {optimizer.param_groups[0]['lr']}")
        for iter in tqdm(range(train_loader.__len__())):
            input_pcd, labels = data_iter.__next__()  # [B, 2048, 3]
            input_pcd = input_pcd.permute(0, 2, 1).contiguous().to(device)
            output = model(input_pcd)  # [B]
            labels = labels[:, 0].to(device) # [B, 1] -> [B]

            optimizer.zero_grad()
            loss = loss_func(output, labels) # ([B, 2], [B])
            loss.backward()
            optimizer.step()

        if epoch > 0 and epoch % 5 == 0:
            scheduler.step()

        if epoch > 0 and epoch % 10 == 0:
            state = {'epoch': epoch,
                     'state_dict': model.module.state_dict(),################
                     'optimizer': optimizer.state_dict(),
                     'scheduler': scheduler.state_dict(),
                     }

            torch.save(state, 'test_model.pth')
            print(f'saving epoch -> {epoch}')

其中相较于单卡训练,需要改动的部分已用################进行标记

脚本启动方式:

#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python -m torch.distributed.launch \
--nproc_per_node=4 \
--master_port 29501 \
test_distributed_gpu.py \
--lr 0.005 \

nproc_per_node == number of visible devices,即用几张卡训练,此参数设置为几

几个需要注意的点:

  1. DPP训练dataloader的shuffle默认为False,设置为True会报错;sampler需要调用set_epoch方法打乱数据顺序,否则每个epoch数据顺序是一样的;
  2. 若出现 RuntimeError: Address already in use 错误,则在启动脚本中加入参数–master_port 29501指定端口,端口号可以任意给出;
  3. 若出现程序中止而显存不释放的问题(常出现于Ctrl+C或者Ctrl+Z挂起以结束程序的方式),使用命令netstat -ntlp查看端口号,找到相应pid,杀死程序kill -9 pid即可;或使用命令fuser -v /dev/nvidia*查看不同显卡上的僵尸进程,找到PID手动kill以释放显存。
  4. pdb调试在单卡下进行,即visible_devices设为1张,nproc_per_node=1下进行,多卡pdb仍然有些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值