Elasticsearch mapping文档相似性算法

Elasticsearch allows you to configure a scoring algorithm or similarity per field. The similaritysetting provides a simple way of choosing a similarity algorithm other than the default TF/IDF, such as BM25.

Similarities are mostly useful for text fields, but can also apply to other field types.

Custom similarities can be configured by tuning the parameters of the built-in similarities. For more details about this expert options, see the similarity module.

The only similarities which can be used out of the box, without any further configuration are:

BM25
The Okapi BM25 algorithm. The algorithm used by default in Elasticsearch and Lucene. See  Pluggable Similarity Algorithms for more information.
classic
The TF/IDF algorithm which used to be the default in Elasticsearch and Lucene. See  Lucene’s Practical Scoring Function for more information.

The similarity can be set on the field level when a field is first created, as follows:

PUT my_index
{
  "mappings": { "my_type": { "properties": { "default_field": {  "type": "text" }, "classic_field": { "type": "text", "similarity": "classic"  } } } } }

The default_field uses the BM25 similarity.

The classic_field uses the classic similarity (ie TF/IDF).

 

参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/similarity.html

转载于:https://www.cnblogs.com/bonelee/p/6472719.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值