HDU 3047 Zjnu Stadium(带权并查集,路径压缩)

本文详细解析了一个关于Zhejiang Normal University新建体育馆中座位安排的问题,通过使用并查集数据结构解决了一系列复杂的座位请求冲突判断。文章深入探讨了并查集的基本原理及其在实际场景中的高效应用,旨在为解决类似大型活动的座位安排提供一种有效算法策略。

Zjnu Stadium

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1675    Accepted Submission(s): 630


Problem Description
In 12th Zhejiang College Students Games 2007, there was a new stadium built in Zhejiang Normal University. It was a modern stadium which could hold thousands of people. The audience Seats made a circle. The total number of columns were 300 numbered 1--300, counted clockwise, we assume the number of rows were infinite.
These days, Busoniya want to hold a large-scale theatrical performance in this stadium. There will be N people go there numbered 1--N. Busoniya has Reserved several seats. To make it funny, he makes M requests for these seats: A B X, which means people numbered B must seat clockwise X distance from people numbered A. For example: A is in column 4th and X is 2, then B must in column 6th (6=4+2).
Now your task is to judge weather the request is correct or not. The rule of your judgement is easy: when a new request has conflicts against the foregoing ones then we define it as incorrect, otherwise it is correct. Please find out all the incorrect requests and count them as R.
 

Input
There are many test cases:
For every case: 
The first line has two integer N(1<=N<=50,000), M(0<=M<=100,000),separated by a space.
Then M lines follow, each line has 3 integer A(1<=A<=N), B(1<=B<=N), X(0<=X<300) (A!=B), separated by a space.

 

Output
For every case: 
Output R, represents the number of incorrect request.
 

Sample Input
  
10 10 1 2 150 3 4 200 1 5 270 2 6 200 6 5 80 4 7 150 8 9 100 4 8 50 1 7 100 9 2 100
 

Sample Output
  
2
Hint
Hint: (PS: the 5th and 10th requests are incorrect)
题目大意:题目鬼扯了很长, 大致意思可以理解为有N个点,每个点的初始位置为0,每行给3个数,x,y,z,y在x的右边距离为z处,相对距离,最后问有几个矛盾的陈述,只用到一个简单的路径压缩,还有很多并查集要用到这个
题目链接:点击打开链接
代码注释:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 50005
int f[N],pos[N];
int n,ans;
int find(int x)
{
    if(x==f[x])
        return f[x];
    int tem=f[x];
    f[x]=find(tem);
    pos[x]+=pos[tem];
    return f[x];
}
void init()
{
    for(int i=1; i<=n; i++)
    {
        f[i]=i;
        pos[i]=0;
    }
    ans=0;
}
void make(int x,int y,int dis)
{
    int a=find(x);
    int b=find(y);
    if(a==b)
    {
        if(pos[y]-pos[x]!=dis)
            ans++;
    }
    else
    {
        f[b]=a;
        pos[b]=pos[x]+dis-pos[y];
    }
}
int main()
{
    int m;
    while(cin>>n>>m)
    {
        init();
        while(m--)
        {
            int x,y,s;
            scanf("%d%d%d",&x,&y,&s);
            make(x,y,s);
        }
        cout<<ans<<endl;
    }
}


【多变量输入超前多步预测】基于CNN-BiLSTM的光伏功率预测研究(Matlab代码实现)内容概要:本文介绍了基于CNN-BiLSTM模型的多变量输入超前多步光伏功率预测方法,并提供了Matlab代码实现。该研究结合卷积神经网络(CNN)强大的特征提取能力与双向长短期记忆网络(BiLSTM)对时间序列前后依赖关系的捕捉能力,构建了一个高效的深度学习预测模型。模型输入包含多个影响光伏发电的气象与环境变量,能够实现对未来多个时间步长的光伏功率进行精确预测,适用于复杂多变的实际应用场景。文中详细阐述了数据预处理、模型结构设计、训练流程及实验验证过程,展示了该方法相较于传统模型在预测精度和稳定性方面的优势。; 适合人群:具备一定机器学习和深度学习基础,熟悉Matlab编程,从事新能源预测、电力系统分析或相关领域研究的研发人员与高校研究生。; 使用场景及目标:①应用于光伏电站功率预测系统,提升电网调度的准确性与稳定性;②为可再生能源并网管理、能量存储规划及电力市场交易提供可靠的数据支持;③作为深度学习在时间序列多步预测中的典型案例,用于科研复现与教学参考。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注数据归一化、CNN特征提取层设计、BiLSTM时序建模及多步预测策略的实现细节,同时可尝试引入更多外部变量或优化网络结构以进一步提升预测性能。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值