Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees
思路:
两种思路:
第一种是使用中序遍历,获得二叉搜索树的排列数组,然后记录下遍历的前一个节点。每个节点均和自己的中序前继比较,如果前继大于或者等于该节点值,那么说明这就不是一个valid的二叉搜索树。
第二种就是按照定义来设计算法,采用自底向上的方法,递归实现。对某一个节点,先求得它的左子树的最大值,最小值,以及左子树是否为valid。再求右子树的最大值,最小值,以及是否为valid。然后再用求得的左边最小值,右边最小值以及该节点的值来更新该节点所代表子树的最小值。同样,用右边最大值,左边最大值,以及该节点的值来更新该节点所代表子树的最大值。
那么该节点所代表的子树是否为vald,取决于左子树,右子树是否为valid,以及左边子树的最大值是否小于该节点值,以及右子树的最小值是否大于该节点值。
代码:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
bool isValidBSTAux(TreeNode *root, int &minInTree, int &maxInTree)
{
if(root == NULL)
{
minInTree = INT_MAX;
maxInTree = INT_MIN;
return true;
}
int leftMin, rightMin, rightMax, leftMax;
bool leftValid = isValidBSTAux(root->left, leftMin, leftMax);
bool rightValid = isValidBSTAux(root->right, rightMin, rightMax);
minInTree = min(leftMin, rightMin);
minInTree = min(minInTree, root->val);
maxInTree = max(leftMax, rightMax);
maxInTree = max(maxInTree, root->val);
bool ret = leftValid && rightValid;
if(root->left)
ret = ret && (leftMax < root->val);
if(root->right)
ret = ret && (rightMin > root->val);
return ret;
}
bool inOrder(TreeNode * root)
{
stack<TreeNode *> s;
TreeNode *p = root, *prev = NULL;
while(!s.empty() || p)
{
if(p)
{
s.push(p);
p = p->left;
}
else
{
p = s.top();
s.pop();
if(prev != NULL && prev->val >= p->val)
return false;
prev = p;
p = p->right;
}
}
return true;
}
public:
bool isValidBST(TreeNode *root) {
/*
return inOrder(root);
*/
int max = INT_MIN, min = INT_MAX;
return isValidBSTAux(root, min, max);
}
};