Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
2 / \ 1 3Binary tree
[2,1,3]
, return true.
Example 2:
1 / \ 2 3Binary tree
[1,2,3]
, return false.
思路:与之前的BST题类似,如果用中序遍历去访问一棵BST,那么得到的是一个有序递增的序列,因此可以考虑用两个相邻节点(pre和node)不断地用中序遍历访问二叉树,若出现node比pre还小的情况,则必定不是BST。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode* pre = NULL;
return validate(root,pre);
}
bool validate(TreeNode* node,TreeNode* &pre){
if(node==NULL)
return true;
if(!validate(node->left,pre))
return false;
if(pre!=NULL && pre->val >= node->val)
return false;
pre = node;
return validate(node->right,pre);
}
};