未完
待读参考:
https://blog.youkuaiyun.com/kaspar1992/article/details/54836222
https://www.cnblogs.com/yin52133/archive/2012/07/21/2602562.html
https://blog.youkuaiyun.com/u011600592/article/details/70258097
https://blog.youkuaiyun.com/Ha_ku/article/details/79755623
https://www.cnblogs.com/21207-iHome/p/6038853.html
https://www.cnblogs.com/sddai/p/6129437.html
论文:方法比较 [Rusinkiewicz et Levoy, 2001], [GRUEN et AKCA, 2005] et [AKCA, 2007]
课堂笔记:
RANSAC算法(RANdom SAmple Consensus随机抽样一致)
ICP算法(Iterative Closest Point迭代最近点)
目的: estimate transform between two dense sets of points
步骤:
1. Assign each point in {Set 1} to its nearest neighbor in {Set 2}
2. Estimate transformation parameters – e.g., least squares or robust least squares
3. Transform the points in {Set 1} using estimated parameters
4. Repeat steps 1-3 until change is very small
可行的预处理:去除离散的噪点。
扩展:PCL云点集
本文深入探讨了点云配准中的关键算法,包括RANSAC(随机抽样一致性)和ICP(迭代最近点)算法。RANSAC用于估计两组密集点集之间的变换,而ICP则通过迭代方式精炼配准效果。文章还提到了预处理中去除噪点的重要性,并附带了多个参考链接及论文,为读者提供了丰富的学习资源。
31万+

被折叠的 条评论
为什么被折叠?



