package com.hadoop.mr;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountMapReduce {
//Mapper Class
public static class WordCountMapper extends Mapper{
// hello world ==> input <0,'hello world'> ===>
private Text outputkey = new Text();
public static final IntWritable outputvalue = new IntWritable(1);f
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
// key 0 value hello world
String lineValue = value.toString();
StringTokenizer st = new StringTokenizer(lineValue); // hello world hdfs
while(st.hasMoreTokens()){
String str = st.nextToken();
outputkey.set(str);
context.write(outputkey, outputvalue);
}
}
}
//Reducer Class key (hello,list(1,5,6))
public static class WordCountReducer extends Reducer{
private IntWritable outputvalue = new IntWritable();
@Override
protected void reduce(Text key, Iterable values,Context context)
throws IOException, InterruptedException {
int sum = 0;
for(IntWritable value :values){
// int a = value.get();
// sum = sum+a;
sum+=value.get();
}
outputvalue.set(sum);
context.write(key, outputvalue);
}
}
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, WordCountMapReduce.class.getSimpleName());
job.setJarByClass(WordCountMapReduce.class);
Path inpath = new Path(args[0]);
FileInputFormat.addInputPath(job,inpath);
Path outpath = new Path(args[1]);
FileOutputFormat.setOutputPath(job, outpath);
job.setMapperClass(WordCountMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//3.5 set reducer
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//###选择true 会将mr运行的日志信息打印出来
boolean flag = job.waitForCompletion(true);
System.exit(flag?0:1);
}
}
MapReduce WordCount
最新推荐文章于 2025-05-14 09:30:00 发布
本文介绍了一个基于Hadoop MapReduce框架实现的WordCount程序,该程序能够从大量文本中统计每个单词出现的次数。文章详细展示了WordCount的Mapper和Reducer类的实现过程,并提供了完整的代码示例。
2万+

被折叠的 条评论
为什么被折叠?



