看过的论文汇总

本文全面概述了水下图像增强与修复领域的经典算法及最新进展,包括Welsh算法、ColorTransfer技术、WaterGAN等深度学习方法,以及Laplacian Pyramid Fusion、Gradient Domain Reflection Removal等高级图像处理技巧。探讨了GAN系列、金字塔融合、反射去除和去伪像等技术在水下成像中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经典算法:
1.Welsh经典算法

color transfer:
1.COLOR TRANSFER FOR UNDERWATER DEHAZING AND DEPTH ESTIMATION
2.Color Transfer between Images

网络:
1.WaterGAN的详细讲解
2.Enhancing Underwater Imagery using Generative Adversarial Networks
3.Multi-scale adversarial network for underwater image restoration
4.CycleGAN讲解
5.Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network
6.Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding

GAN系列的总结
pytorch训练GAN的代码(基于MNIST数据集)

深度学习:
1.A DEEP CNN METHOD FOR UNDERWATER IMAGE ENHANCEMENT
2.A Deep Learning Approach for Underwater Image Enhancement
3.Deep Learning Underwater Image Color Correction and Contrast Enhancement Based on Hue Preservation

金字塔:
1.Underwater Image Enhancement via L2 based Laplacian Pyramid Fusion
2.

反射去除梯度域:
1.CoRRN: Cooperative Reflection Removal Network
2.Gradient Guided Image Deblocking Using Convolutional Neural Networks

CRRN与CoRRN的区别

反射去除:
1.Joint Reflection Removal and Depth Estimation From a Single Image

去伪像:
1.Deep Convolution Networks for Compression Artifacts Reduction

去雨:
1.Depth-attentional Features for Single-image Rain Removal

低照度:
1.Efficient Illuminant Estimation for Color Constancy Using Grey Pixels

图像去雾:
1.Locally Adaptive Color Correction for Underwater Image Dehazing and Matching
2.Underwater Image Enhancement by Dehazing WithMinimum Information Loss and Histogram Distribution Prior
3.Underwater Image Enhancement: Using Wavelength Compensation and Image Dehazing (WCID)
4.NIGHTTIME HAZE REMOVAL USING COLOR TRANSFER PRE-PROCESSING AND DARK CHANNEL PRIOR

图像增强
1.A Biological Vision Inspired Framework for Image Enhancement in Poor Visibility Conditions

颜色恒常:
1.Color Constancy by Learning to Predict Chromaticity from Luminance

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值