Problem Statement
We say that a odd number N is similar to 2017 when both N and (N+1)⁄2 are prime.
You are given Q queries.
In the i-th query, given two odd numbers li and ri, find the number of odd numbers x similar to 2017 such that li≤x≤ri.
Constraints
1≤Q≤105
1≤li≤ri≤105
li and ri are odd.
All input values are integers.
Input
Input is given from Standard Input in the following format:
Q
l1 r1
:
lQ rQ
Output
Print Q lines. The i-th line (1≤i≤Q) should contain the response to the i-th query.
Sample Input 1
1
3 7
Sample Output 1
2
3 is similar to 2017, since both 3 and (3+1)⁄2=2 are prime.
5 is similar to 2017, since both 5 and (5+1)⁄2=3 are prime.
7 is not similar to 2017, since (7+1)⁄2=4 is not prime, although 7 is prime.
Thus, the response to the first query should be 2.
Sample Input 2
4
13 13
7 11
7 11
2017 2017
Sample Output 2
1
0
0
1
Note that 2017 is also similar to 2017.
Sample Input 3
6
1 53
13 91
37 55
19 51
73 91
13 49
Sample Output 3
4
4
1
1
1
We say that a odd number N is similar to 2017 when both N and (N+1)⁄2 are prime.
You are given Q queries.
In the i-th query, given two odd numbers li and ri, find the number of odd numbers x similar to 2017 such that li≤x≤ri.
Constraints
1≤Q≤105
1≤li≤ri≤105
li and ri are odd.
All input values are integers.
Input
Input is given from Standard Input in the following format:
Q
l1 r1
:
lQ rQ
Output
Print Q lines. The i-th line (1≤i≤Q) should contain the response to the i-th query.
Sample Input 1
1
3 7
Sample Output 1
2
3 is similar to 2017, since both 3 and (3+1)⁄2=2 are prime.
5 is similar to 2017, since both 5 and (5+1)⁄2=3 are prime.
7 is not similar to 2017, since (7+1)⁄2=4 is not prime, although 7 is prime.
Thus, the response to the first query should be 2.
Sample Input 2
4
13 13
7 11
7 11
2017 2017
Sample Output 2
1
0
0
1
Note that 2017 is also similar to 2017.
Sample Input 3
6
1 53
13 91
37 55
19 51
73 91
13 49
Sample Output 3
4
4
1
1
1
2
题意:判断[l,r]内与2017类似的数字,2017的性质:2017为素数,(2017+1)/2仍为素数。
思路:打表算出来1-10^5内各自的数字,然后结果为a[r]-a[l-1].(区间问题一直是我的一个弱项,类似于[l,r]找是3和7的倍数是多少个的问题,我在HNUST上WA了20发!!!!)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <set>
#include <string>
#include <cstring>
#include <cmath>
#include <map>
#define N 100005
using namespace std;
typedef long long ll;
int vis[N],a[N];
void creat()
{
for(int i=2; i<=400; i++)
{
if(!vis[i])
{
for(int j=i*2; j<=N; j+=i)
vis[j]=1;
}
}
}
int main()
{
memset(vis,0,sizeof(vis));
creat();
vis[1]=1;
int sum=0,n;
for(int i=1; i<=N; i++)
{
if(i%2==1)
{
if(vis[i]==0&&vis[(i+1)/2]==0)
sum++;
}
a[i]=sum;
}
while(scanf("%d",&n)==1)
{
while(n--)
{
int c,b;
scanf("%d%d",&c,&b);
printf("%d\n",a[b]-a[c-1]);
}
}
}