导读:随着数据量的快速增长,传统的数据处理方法难以满足对计算速度、资源利用率以及查询响应时间的要求。为了应对这些挑战,Spark SQL 引入了多种优化技术,以提高查询效率,降低计算开销。本文从表达式层面探讨了 Spark SQL 的优化手段,重点分析了三个方面。一,LIKE ALL 与 LIKE ANY通过重新设计表达式的基类LikeAllBase来避免内存和栈空间消耗过大的问题。二, trim 函数通过重构原有代码,将通用的逻辑抽象到父类中,减少了冗余的代码并提高了代码复用性,优化了执行效率。三,常量折叠通过在查询优化阶段计算常量表达式的值,并将其缓存,避免了在查询执行时重复计算,从而显著提升了性能。
今天的介绍围绕下面六点展开:
-
数新智能大数据产品
-
Spark SQL 课程前情回顾
-
Spark SQL 分析层原理
-
LIKE ALL 与 LIKE ANY 优化
-
改进 trim 函数
-
常量折叠
一、数新智能大数据产品
第一个介绍的是赛博数智引擎(Cyber Engine)。从其架构图可以看出,Cyber Engine基于统一的元数据服务,能够支持 K8S、Yarn 等资源管理系统的任务调度。上层则支持多种机器学习框架和流批处理引擎,例如 Spark、Flink 等。除此之外,Cyber Engine 还具备了自有的 Cyber SQL 以及调度引擎 Cyber Schedule 等功能。
今天的主题主要讲的是Spark,因此特别提到,在 Cyber Engine 中,针对 Spark 进行了大量的性能优化和稳定性提升,同样对Flink 也做了许多稳定性方面的优化。此外,Cyber Engine 基于 Spark 实现了统一的 SQL 查询平台——Cyber SQL,能够支持机器查询、联邦查询等多种查询方式,补充了非 ETL 场景下的大数据处理需求。
第二个产品是赛博数据平台(Cyber Data)。这是数新智能研发的一站式多云大数据管理平台。它不仅支持流批一体,还支持湖仓一体、数智一体等多种架构,也支持公有云、私有云以及混合云的部署。在这些云基础架构上,Cyber Data 还能够支持一些非云场景,帮助用户实现数据治理、数据开发、数据安全、数据质量等数据中台能力。
二、Spark SQL 课程前情回顾
第一讲,我们主要探讨了Spark 内核的原理。第二讲我们详细讲解了 Spark SQL 的原理,涵盖了其实现方式以及用户提交的 SQL 在 Spark 中的处理流程。第三、四讲,我从解析层开始,逐层深入到分析层,选取了几例典型的案例,介绍了每一层的详细设计,并分享了每一层的优化案例。