25、核心数据搜索与Cocoa界面元素探索

核心数据搜索与Cocoa界面元素探索

1. 使用条件搜索和检索核心数据

1.1 配置谓词编辑器

在谓词编辑器中,我们可以对弹出按钮进行设置。具体操作如下:
1. 检查行模板中的弹出按钮,将显示的三个条目名称修改为更易读的名称,如“Quotation”、“Character Name”和“Show Name”。
2. 点击显示“Any of the following are true”的上一行模板,勾选允许用户使用布尔AND、OR和NOT进行搜索的复选框,以实现最大的实用性。
3. 为避免用户删除所有行后无法添加新行的问题,选择谓词编辑器本身,在属性检查器中关闭“Can Remove All Rows”复选框。

1.2 保存谓词

为了让用户在下次启动应用时能看到上次的搜索查询,我们可以对应用进行如下修改:

#import "QMAppDelegate.h"

@implementation QMAppDelegate

@synthesize persistentStoreCoordinator = _persistentStoreCoordinator;
@synthesize managedObjectModel = _managedObjectModel;
@synthesize managedObjectContext = _managedObjectContext;

#define DEFAULT_PREDICATE @"(quoteText CONTAINS[cd] 'missed') OR " \
                
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值