代码展示:
import numpy as np
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation,LSTM
from keras.layers import Embedding,GRU,Bidirectional
from keras.callbacks import EarlyStopping
from keras.datasets import imdb
n_words = 1000
(X_train,y_train),(X_test,y_test) = imdb.load_data(num_words=n_words)
print("train seq:{}".format(len(X_train)))
print("test seq:{}".format(len(X_test)))
print("train example:{}".format(X_train[0]))
print("test example:{}".format(X_test[0]))
max_len = 200
X_train = sequence.pad_sequences(X_train,maxlen=max_len)
X_test = sequence.pad_sequences(X_test,maxlen=max_len)
#model
model = Sequential()
model.add(Embedding(n_words ,50,input_length=max_len))
model.add(Dropout(0.2))
model.add(Bidirectional(LSTM(100,dropout = 0.2,recurrent_dropout= 0.2)))
model.add(Dense(250,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['acc'])
model.summary()
callbacks = [EarlyStopping(monitor='val_acc',patience=3)]
batch_size = 1024
n_epochs = 10
model.fit(X_train,y_train,batch_size=batch_size,epochs=n_epochs,validation_split=0.2,callbacks=callbacks)
print('acc on test set :{}'.format(model.evaluate(X_test,y_test,batch_size=batch_size)[1]))
实现截图:

本文通过Keras实现了一个情感分析模型,使用IMDb数据集对电影评论进行正面与负面情感的分类。从数据预处理到构建双向LSTM+Dropout的模型,展示了文本情感分析的基本步骤和实践技巧。
1035

被折叠的 条评论
为什么被折叠?



