【学习记录】深度学习中的双向RNN实现

本文通过Keras实现了一个情感分析模型,使用IMDb数据集对电影评论进行正面与负面情感的分类。从数据预处理到构建双向LSTM+Dropout的模型,展示了文本情感分析的基本步骤和实践技巧。

代码展示:

import numpy as np
import pandas as pd

from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation,LSTM
from keras.layers import Embedding,GRU,Bidirectional
from keras.callbacks import EarlyStopping
from keras.datasets import  imdb

n_words = 1000
(X_train,y_train),(X_test,y_test) = imdb.load_data(num_words=n_words)
print("train seq:{}".format(len(X_train)))
print("test seq:{}".format(len(X_test)))
print("train example:{}".format(X_train[0]))
print("test example:{}".format(X_test[0]))

max_len = 200
X_train = sequence.pad_sequences(X_train,maxlen=max_len)
X_test = sequence.pad_sequences(X_test,maxlen=max_len)


#model
model = Sequential()
model.add(Embedding(n_words ,50,input_length=max_len))
model.add(Dropout(0.2))
model.add(Bidirectional(LSTM(100,dropout = 0.2,recurrent_dropout= 0.2)))
model.add(Dense(250,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['acc'])
model.summary()


callbacks = [EarlyStopping(monitor='val_acc',patience=3)]
batch_size = 1024
n_epochs  = 10
model.fit(X_train,y_train,batch_size=batch_size,epochs=n_epochs,validation_split=0.2,callbacks=callbacks)
print('acc on test set :{}'.format(model.evaluate(X_test,y_test,batch_size=batch_size)[1]))

实现截图:

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值