yolo训练设置

 训练设置

yolo训练参数设置
arg

默认值      

                                          说明

model       

None 指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。
data None 数据集配置文件的路径(例如 coco128.yaml).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。
epochs 100

训练轮次总数。每个历元代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。

time
None
最长训练时间(小时)。如果设置了该值,则会覆盖 epochs 参数,允许训练在指定的持续时间后自动停止。对于时间有限的训练场景非常有用。
patience 100 在验证指标没有改善的情况下,提前停止训练所需的历元数。当性能趋于平稳时停止训练,有助于防止过度拟合。
batch        16 训练的批量大小,表示在更新模型内部参数之前要处理多少张图像。自动批处理 (batch=-1)会根据 GPU 内存可用性动态调整批处理大小。
imgsz 640 用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。
save True 可保存训练检查点和最终模型权重。这对恢复训练或模型部署非常有用。
save_period -1 保存模型检查点的频率,以 epochs 为单位。值为-1 时将禁用此功能。该功能适用于在长时间训练过程中保存临时模型。
cache False 在内存中缓存数据集图像 (True/ram)、磁盘 (disk),或禁用它 (False).通过减少磁盘 I/O 提高训练速度,但代价是增加内存使用量。
device None 指定用于训练的计算设备:单个 GPU (device=0)、多个 GPU (device=0,1)、CPU (device=cpu),或苹果芯片的 MPS (device=mps).
workers 8 加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。
project None 保存训练结果的项目目录名称。允许有组织地存储不同的实验。
name None 训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。
exist_ok False 如果为 True,则允许覆盖现有的项目/名称目录。这对迭代实验非常有用,无需手动清除之前的输出。
pretrained True 决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。
optimizer 'auto' 为培训选择优化器。选项包括 SGDAdamAdamWNAdamRAdamRMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性
verbose False 在训练过程中启用冗长输出,提供详细日志和进度更新。有助于调试和密切监控培训过程。
seed 0 为训练设置随机种子,确保在相同配置下运行的结果具有可重复性。
deterministic True 强制使用确定性算法,确保可重复性,但由于对非确定性算法的限制,可能会影响性能和速度。
single_cls False 在训练过程中将多类数据集中的所有类别视为单一类别。适用于二元分类任务,或侧重于对象的存在而非分类。
rect False 可进行矩形训练,优化批次组成以减少填充。这可以提高效率和速度,但可能会影响模型的准确性。
cos_lr False 利用余弦学习率调度器,根据历时的余弦曲线调整学习率。这有助于管理学习率,实现更好的收敛。
close_mosaic 10 在训练完成前禁用最后 N 个历元的马赛克数据增强以稳定训练。设置为 0 则禁用此功能。
resume False 从上次保存的检查点恢复训练。自动加载模型权重、优化器状态和历时计数,无缝继续训练。
amp True 启用自动混合精度 (AMP) 训练,可减少内存使用量并加快训练速度,同时将对精度的影响降至最低。
fraction 1.0 指定用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值