Nano环境下配置+torch&tensorflow安装

本文提供Jetson Nano的详细配置步骤,包括CUDA、Torch、TensorFlow等深度学习框架的安装,以及如何更换镜像源以提升下载速度。

CUDA与Torch、Torchvision版本对应

CUDA下载链接

JetPack4.5下载链接

recommend:

CUDATorchTorchvision
9.0/10.01.1.00.3.0
9.2/10.01.2.00.4.0
1.3.00.4.2
9.2/10.11.4.00.5.0
9.2/10.1/10.21.5.00.6.0
9.2/10.1/10.21.6.00.7.0
9.2/10.1/10.2/11.01.7.00.8.1
10.2/11.01.8.00.9.0

1 配置Torch

pip install torch===1.5.0 torchvision===0.6.0 -f https://download.pytorch.org/whl/torch_stable.html

2 配置CUDA

# 安装环境变量:
vim ~/.bashrc   #或者采用 source gedit ~/.bashrc
 
#在最后写入并保存:
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
 
#使其生效:
source ~/.bashrc
 
#查看是否生效:
cat /proc/driver/nvidia/version
nvcc -V

3 Jestin nano 刷机后环境初始化

分别执行以下命令,即可查看自己的jetson nano 预搭载的CUDA版本
sudo pip3 install jetson-stats
sudo jtop

1.镜像下载

(1)CUDA10.0的镜像:https://developer.nvidia.com/embedded/dlc/jetson-nano-dev-kit-sd-card-image

(2)CUDA10.2的镜像:https://developer.nvidia.com/jetson-nano-sd-card-image

附:官网详细介绍

2.镜像文件写入microSD卡

https://www.balena.io/etcher/

3.ubuntu流程(略)

4.开机后环境配置

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install libhdf5-serial-dev hdf5-tools zlib1g-dev zip libjpeg8-dev libhdf5-dev  python3-pip

sudo apt-get install libhdf5-dev
sudo apt-get install python-h5py

5.Tensorflow and pytorch安装

tensorflow 快速安装链接:https://developer.download.nvidia.com/compute/redist/jp/v42/tensorflow-gpu/
Tensorflow for Jetson Nano
pytorch快速安装链接:官网whl链接

#install tensorflow
sudo pip install --ignore-installed --upgrade tensorflow_gpu-1.3.0-cp36-cp36m-linux_x86_64.whl

安装torch

wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whl
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev 
pip3 install Cython
pip3 install numpy torch-1.8.0-cp36-cp36m-linux_aarch64.whl

安装torchvision (官网github源码下载

$ sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
$ git clone --branch <version> https://github.com/pytorch/vision torchvision   # see below for version of torchvision to download
$ cd torchvision
$ export BUILD_VERSION=0.x.0  # where 0.x.0 is the torchvision version  
$ python3 setup.py install --user
$ cd ../  # attempting to load torchvision from build dir will result in import error
$ pip install 'pillow<7' # always needed for Python 2.7, not needed torchvision v0.5.0+ with Python 3.6
#换成码云下载torchvision
$ git clone --branch v0.7.0 https://gitee.com/zero-one-game/vision 

指定镜像安装pillow

sudo apt-get install libjpeg8 libjpeg62-dev libfreetype6 libfreetype6-dev
python3 -m pip install -i https://mirrors.aliyun.com/pypi/simple pillow
  1. archiconda3:
    https://github.com/yqlbu/archiconda3
#open the file
vim ~/.bashrc
#archiconda3
export PATH="/home/klx/archiconda3/bin:$PATH"
#update the file
source ~/.bashrc
enable all Ubuntu packages:
$ sudo apt-add-repository universe
$ sudo apt-add-repository multiverse
$ sudo apt-add-repository restricted


add ROS repository to apt sources
$ sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/ $DISTRIB_CODENAME main" > /etc/apt/sources.list.d/ros-latest.list'
$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654


install ROS Base
$ sudo apt-get update
$ sudo apt-get install ros-melodic-ros-base


add ROS paths to environment
sudo sh -c 'echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc'

安装opencv

安装opencv依赖项,用aptitude来进行操作:
# Update
sudo apt-get update
sudo apt-get upgrade
# Pre-requisites
sudo aptitude install build-essential cmake unzip pkg-config
sudo aptitude  install libjpeg-dev libpng-dev libtiff-dev
sudo aptitude  install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo aptitude  install libxvidcore-dev libx264-dev
 
#下面这个会告诉你有冲突项,你第一次选择n,第二次之后选择y即可
sudo aptitude  install libgtk-3-dev
sudo aptitude  install libatlas-base-dev gfortran
sudo aptitude  install python3-dev

1.首先扩大jetson nano的内存,因为要下载opencv的源码并编译,之后还要安装tensorflow,所以可能内存不够大,要增加内存。可以进入github:https://github.com/JetsonHacksNano查看并下载
或者直接在命令行操作

git clone https://github.com/JetsonHacksNano/installSwapfile
./installSwapfile.sh #编译文件,默认扩大6G内存

2.下载编译opencv

git clone https://github.com/JetsonHacksNano/buildOpenCV
./buildOpenCV.sh #编译opencv

或者 pip3 install opencv-python
3.测试

python3
import cv2
cv2.__version__
  1. The second method: sudo apt-get install python3-opencv
  2. The third method:https://www.jianshu.com/p/99bdc2472423

Jetson Nano使用教程:
(1)http://www.yoyojacky.com/?p=513

4 Jetson Nano 更换镜像源

1、更换
NVIDIA官方提供的Linux镜像版本为Ubuntu 18.04 LTS,镜像默认的是Ubuntu官方源,在国内使用该源下载程序速度较慢,所以需要更换。

打开/etc/apt/sources.list文件,注释原内容,在末尾添加下述内容(以清华大学镜像源为例,注意镜像源需要支持arm64架构):

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse

2、其他镜像源
下面提供了国内几个支持arm64架构的Ubuntu镜像源:

清华大学镜像源:

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-proposed main restricted universe multiverse


中国科学技术大学镜像源:

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb http://mirrors.ustc.edu.cn/ubuntu-ports bionic main restricted universe multiverse
# deb-src http://mirrors.ustc.edu.cn/ubuntu-ports bionic main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu-ports bionic-updates main restricted universe multiverse
# deb-src http://mirrors.ustc.edu.cn/ubuntu-ports bionic-updates main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu-ports bionic-backports main restricted universe multiverse
# deb-src http://mirrors.ustc.edu.cn/ubuntu-ports bionic-backports main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu-ports bionic-security main restricted universe multiverse
# deb-src http://mirrors.ustc.edu.cn/ubuntu-ports bionic-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb http://mirrors.ustc.edu.cn/ubuntu-ports bionic-proposed main restricted universe multiverse
# deb-src http://mirrors.ustc.edu.cn/ubuntu-ports bionic-proposed main restricted universe multiverse


阿里巴巴镜像站:

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.aliyun.com/ubuntu-ports/ bionic main restricted universe multiverse
# deb-src https://mirrors.aliyun.com/ubuntu-ports/ bionic main restricted universe multiverse
deb https://mirrors.aliyun.com/ubuntu-ports/ bionic-updates main restricted universe multiverse
# deb-src https://mirrors.aliyun.com/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb https://mirrors.aliyun.com/ubuntu-ports/ bionic-backports main restricted universe multiverse
# deb-src https://mirrors.aliyun.com/ubuntu-ports/s bionic-backports main restricted universe multiverse
deb https://mirrors.aliyun.com/ubuntu-ports/ bionic-security main restricted universe multiverse
# deb-src https://mirrors.aliyun.com/ubuntu-ports/ bionic-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb https://mirrors.aliyun.com/ubuntu-ports/ bionic-proposed main restricted universe multiverse
# deb-src https://mirrors.aliyun.com/ubuntu-ports/ bionic-proposed main restricted universe multiverse

3、系统更新
系统源和软件源配置完成以后,使用下述两条命令更新:

sudo apt update
sudo apt upgrade -y

附件

Jetson Nano 版本对应

JetPack与Pytorch版本

在这里插入图片描述

PyTorch与TorchVision版本

在这里插入图片描述

<think>好的,我现在需要帮用户解决如何在Jetson Nano配置深度学习环境的问题。首先,用户提到了参考的引用资料,一个是关于安装Miniconda的博客,另一个指出Jetson Nano不支持conda,建议用virtualenv。这两个引用看起来有点矛盾,需要先理清楚。 首先,Jetson Nano是基于ARM架构的,而通常的conda包是针对x86架构的,所以可能官方conda不支持。但引用1提到有人成功安装了Miniconda,可能是有社区支持的版本或者特定版本的Miniconda。而引用2则说Jetson Nano不支持conda,推荐virtualenv。这说明用户可能有两个不同的方法,需要分别说明。 接下来,我应该先列出步骤,可能分为两种方法:使用Miniconda或者使用virtualenv。但需要确认Miniconda是否可行。根据引用1的博客,用户可能找到了适用于aarch64架构的Miniconda版本,比如Miniforge,它支持ARM。所以第一步可能需要安装Miniforge,而不是官方的Miniconda。 然后,安装必要的依赖库,比如JetPack自带的CUDA和cuDNN,但用户可能需要安装Python库,比如PyTorch或TensorFlow的ARM版本。例如,NVIDIA提供了JetPack SDK,可能已经包含这些,但深度学习框架需要特定版本。 另外,用户可能需要配置虚拟环境,无论是通过conda还是virtualenv,确保环境隔离。然后安装深度学习框架,比如PyTorch或TensorFlow,可能需要从源码编译或者下载预编译的版本,比如NVIDIA提供的PyTorch for Jetson。 还要考虑安装其他库,比如OpenCV、numpy等,可能需要使用apt安装,或者通过pip安装兼容的版本。同时,注意Python版本,Jetson Nano可能默认是Python3.6或3.8,需要确认。 可能需要分步骤说明:系统准备、安装虚拟环境工具(conda或virtualenv)、创建环境安装深度学习框架、验证安装等。同时,要提醒用户注意依赖项和兼容性问题,比如CUDA版本与框架版本的对应关系。 最后,生成相关问题,可能涉及性能优化、常见错误解决、其他环境管理工具等。</think>### Jetson Nano 深度学习环境搭建教程 #### 1. 系统准备 - **更新系统**: ```bash sudo apt update && sudo apt upgrade -y ``` - **安装基础依赖**: ```bash sudo apt install python3-pip python3-dev libopenblas-base libopenmpi-dev libjpeg-dev zlib1g-dev ``` #### 2. 虚拟环境管理(二选一) ##### 方法一:使用 Miniconda(需ARM兼容版本) 1. **下载Miniforge(ARM架构专用)**: ```bash wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh ``` 2. **安装并激活**: ```bash bash Miniforge3-Linux-aarch64.sh source ~/.bashrc ``` 3. **创建虚拟环境**: ```bash conda create -n dl_env python=3.8 conda activate dl_env ``` ##### 方法二:使用 virtualenv 1. **安装virtualenv**: ```bash pip3 install virtualenv ``` 2. **创建并激活环境**: ```bash virtualenv dl_env source dl_env/bin/activate ``` #### 3. 安装深度学习框架 - **PyTorch(Jetson专用版本)**: 从[NVIDIA官网](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-13-now-available/72048)下载预编译包,例如: ```bash pip3 install numpy torch-2.0.0+nv23.05-cp38-cp38-linux_aarch64.whl ``` - **TensorFlow**: 安装Jetson社区维护的版本: ```bash pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v53 tensorflow ``` #### 4. 验证安装 ```python import torch print(torch.__version__) # 应输出类似2.0.0 print(torch.cuda.is_available()) # 应返回True ``` #### 5. 其他工具安装 - **OpenCV**: ```bash sudo apt install python3-opencv ``` - **Jupyter Lab**: ```bash pip3 install jupyterlab ``` #### 注意事项 1. JetPack版本需与框架兼容(如JetPack 5.x对应CUDA 11.4)[^1]。 2. 安装PyTorch时需选择与Python版本匹配的预编译包[^2]。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值