直觉十三边形模糊数的关键路径问题研究
1. 直觉十边形模糊数的欧几里得排序技术
1.1 基本定义
设 (P_i) 为第 (i) 条模糊路径长度,其表达式为:
[
P_i =
\left(
\begin{array}{c}
(\eta_{1,1}, \eta_{2,1}, \eta_{3,1}, \eta_{4,1}, \eta_{5,1}, \eta_{6,1}, \eta_{7,1}, \eta_{8,1}, \eta_{9,1}, \eta_{10,1}, \eta_{11,1}, \eta_{12,1}, \eta_{13,1}) \
(\eta’ {1,1}, \eta’ {2,1}, \eta’ {3,1}, \eta’ {4,1}, \eta’ {5,1}, \eta’ {6,1}, \eta’ {7,1}, \eta’ {8,1}, \eta’ {9,1}, \eta’ {10,1}, \eta’ {11,1}, \eta’ {12,1}, \eta’ {13,1})
\end{array}
\right)
]
设 (P {max}) 为最长路径长度,表达式为:
[
P_{max} =
\left(
\begin{array}{c}
(\beta_{1,1}, \beta_{2,1}, \beta_{3,1}, \beta_{4,1}, \beta_{5,1}, \beta_{6,1
直觉十三边形模糊数关键路径研究
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



