非常详细的Splay笔记

本文深入探讨了Splay树的原理与操作,包括旋转、调整、构建等核心方法,并通过具体实例展示了其在反转子序列问题上的应用。Splay树是一种自调整的二叉搜索树,能够高效地进行查找、插入和删除操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Splay笔记

0.
第一次接触是去年暑假一位巨佬学长介绍了这么一种神奇的平衡树,不过当时感觉没怎么完全弄懂。后来仔细想了一下个人感觉理解大有加深,这个数据结构确实非常优秀~~~传到优快云上来啦!
1. rotate()
To maintain the features of BST, we can get these basic rotation rules:

If A is the x son of B,

  • B will become the !x son of A after the rotation.
  • The !x son of B will still be the !x son of B after the rotation.
  • The !x son of A will become the x son of B after the rotation.
  • The x son of A will still be the x son of A after the rotation.

Before & After one rotation:
在这里插入图片描述
CODE:

bool dir(int x)
{
    return x==tree[tree[x].fa].ch[1];
}

void pushup(int x)
{
    tree[x].tot=tree[tree[x].ch[0]].tot+tree[tree[x].ch[1]].tot+1;
    return;
}

void connect(int x,int fa,int son)
{
    tree[x].fa=fa;
    tree[fa].ch[son]=x;
    return;
}

void rotate(int x)
{
    int y=tree[x].fa;
    if(y==root)
        root=x; //Remember to change the root. 
    int r=tree[y].fa;
    int yson=dir(x),rson=dir(y);
    int build=tree[x].ch[yson^1];
    connect(build,y,yson);
    connect(y,x,yson^1);
    connect(x,r,rson);
    pushup(y);
    pushup(x);
    return;
}

More explanations to the rotate function:
在这里插入图片描述
The left is one of the original relationship among the grandfather, the father, and the son. After rotate(x), the relationship among them becomes the right part of the picture.
Other situations can be gotten similarly by reflecting or reversing.
2. splay()

splay(x,to) is to rotate x continuously until it becomes to’s son.

There are two conditions of x, x’s father, and x’s grandfather: whether they are in a straight line or not.

  • If dir(x)≠\not==dir(y), we can just simply rotate x twice.
    在这里插入图片描述
  • If dir(x)===dir(y), if we rotate x’s father then rotate x, we will get this:
    在这里插入图片描述
    Instead, if we rotate x twice, we will get this.
    在这里插入图片描述
    The first one can keep the tree more balanced, especially when there is a long chain in the tree.

But actually, both methods meet some situations that will make the situation more or less balance.

I choose the first in the following code.
CODE:

void splay(int x,int to)
{ 
    while(tree[x].fa!=to)
    {
        int y=tree[x].fa;
        if(tree[y].fa==to) //Sometimes x only needs to be rotated once. 
            rotate(x);
        else if(dir(x)==dir(y))
            rotate(y),rotate(x);
        else
            rotate(x),rotate(x);
    }
    pushup(x);
    return;
}

3. build()
I prefer to use recursion to build the tree…

int build(int l,int r)
{
    if(l>r)
        return 0;
    int mid=(l+r)>>1;
    connect(build(l,mid-1),mid,0);
    connect(build(mid+1,r),mid,1);
    tree[mid].rev=0;
    pushup(mid);
    return mid; //The return value is the root. 
}

4. Two Basic Problems
Important:Whenever\color{red}{Important:Whenever}Important:Whenever an\color{red}{an}an operation\color{red}{operation}operation about\color{red}{about}about nodes(which\color{red}{nodes(which}nodes(which means\color{red}{means}means asking\color{red}{asking}asking rank\color{red}{rank}rank is\color{red}{is}is excluded)\color{red}{excluded)}excluded) is\color{red}{is}is done,\color{red}{done,}done, splay\color{red}{splay}splay the\color{red}{the}the node.\color{red}{node.}node.

  • P3391 (Luogu)

Overview: Several commands (l,r) which mean that the subsequence from l to r in the array is reversed are given. Print out the array you get after m commands.

/*
This function is for updating the reverse tag of the node. 
The main idea is that there is no need to reverse a section twice, so you can save lots of time by marking. (Similar to the lazy tag of the segment tree.)
*/
void pushdown(int x)
{
    if(tree[x].rev)
    {
        swap(tree[x].ch[0],tree[x].ch[1]); 
        tree[tree[x].ch[0]].rev^=1;
        tree[tree[x].ch[1]].rev^=1;
        tree[x].rev=0;
    }
    return;
}

int find(int x)
{
    int now=root;
    x--;
    pushdown(now);
    while(x!=tree[tree[now].ch[0]].tot)
    {
        if(tree[tree[now].ch[0]].tot<x)
            x-=tree[tree[now].ch[0]].tot+1,now=tree[now].ch[1];
        else
            now=tree[now].ch[0];
        pushdown(now);
        }
    return now;
}

PRINT:

void print(int now)
{
    if(!now)
        return;
    pushdown(now);
    print(tree[now].ch[0]);
    if(now!=1 && now!=n+2)
      cout<<now-1<<' ';
    print(tree[now].ch[1]);
    return; 
}

MAIN:

PosL=find(l);
splay(PosL,0);
PosR=find(r+2);
splay(PosR,root);
tree[tree[PosR].ch[0]].rev^=1;

(待填坑)有空我把splay的普通平衡树也实现一下放上来。有空再更一下splay的时间复杂度~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值