You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of unit cubes which may or may not be filled with rock. It takes one minute to move one unit north, south, east, west, up or down. You cannot move diagonally and the maze is surrounded by solid rock on all sides.
Is an escape possible? If yes, how long will it take?
Input
The input consists of a number of dungeons. Each dungeon description starts with a line containing three integers L, R and C (all limited to 30 in size).
L is the number of levels making up the dungeon.
R and C are the number of rows and columns making up the plan of each level.
Then there will follow L blocks of R lines each containing C characters. Each character describes one cell of the dungeon. A cell full of rock is indicated by a ‘#’ and empty cells are represented by a ‘.’. Your starting position is indicated by ‘S’ and the exit by the letter ‘E’. There’s a single blank line after each level. Input is terminated by three zeroes for L, R and C.
Output
Each maze generates one line of output. If it is possible to reach the exit, print a line of the form
Escaped in x minute(s).
where x is replaced by the shortest time it takes to escape.
If it is not possible to escape, print the line
Trapped!
Sample Input
3 4 5
S....
.###.
.##..
###.#
#####
#####
##.##
##...
#####
#####
#.###
####E
1 3 3
S##
#E#
###
0 0 0
Sample Output
Escaped in 11 minute(s).
Trapped!
解题报告
只要细心就是水题,bfs走一遍即可
#include<stdio.h>
#include<string.h>
#include<queue>
#define MAX_N 32
using namespace std;
typedef pair<int,int> P;
bool map[MAX_N][MAX_N][MAX_N];
int best[MAX_N][MAX_N][MAX_N];
int s_x,s_y,s_t,e_x,e_y,e_t,H,W,T;
int ox[]={0,0,0,1,-1};
int oy[]={0,1,-1,0,0};
int ot[]={0,1,-1};
void bfs(){
memset(best,0x3f,sizeof(best));
queue<P> que;
que.push(make_pair(s_x+s_y*H,s_t));
best[s_t][s_x][s_y]=0;
while(!que.empty()){
int X=que.front().first%H,Y=que.front().first/H,now=que.front().second;que.pop();
int step=best[now][X][Y];
if(X==e_x&&Y==e_y&&now==e_t){
printf("Escaped in %d minute(s).\n",step);
return ;
}
for(int i=0;i<5;i++){
int x=ox[i]+X;
int y=oy[i]+Y;
if(0<=x&&x<H&&0<=y&&y<W&&map[now][x][y]){
for(int u=0;u<3;u++){
int el=ot[u]+now;
int r=ot[u]&&i>0?1:0;
if(T>el&&el>=0&&map[el][x][y]&&best[el][x][y]>step+1+r){
best[el][x][y]=step+1+r;
que.push(make_pair(x+y*H,el));
}
}
}
}
}
puts("Trapped!");
}
int main()
{
char str[32];
while(~scanf("%d%d%d",&T,&H,&W)&&T&&H&&W){
for(int t=0;t<T;t++)
for(int i=0;i<H;i++){
scanf("%s",str);
for(int j=0;j<W;j++){
switch(str[j]){
case 'S':s_x=i,s_y=j,s_t=t;map[t][i][j]=true;break;
case 'E':e_x=i,e_y=j,e_t=t;map[t][i][j]=true;break;
case '.':map[t][i][j]=true;break;
case '#':map[t][i][j]=false;break;
}
}
}
bfs();
}
return 0;
}
3D迷宫逃脱算法
本文介绍了一种解决3D迷宫逃脱问题的算法。利用广度优先搜索(BFS),该算法能够找到从起点到终点的最短路径。文章详细展示了如何通过遍历每个可能的方向来探索迷宫,并记录到达每个位置所需的最少时间。

585

被折叠的 条评论
为什么被折叠?



