Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
解题报告
最小操作问题,典型用bfs,只是bfs 数据量指数增长会超内存,所以我们要想办法优化。
这个题的有效数据其实就是在[0,2 * K]内,最多2 * K个,所以去除重复数据后的有效数据也就2 * K个,如何去除重复,用bool vis[]记录是否访问,后访问的都是无效的数据,没必要加入队列,那么复杂度就是O(K)了
//BFS Memory Limit Exceeded
#include<stdio.h>
#include<queue>
using namespace std;
int N,K,ans;
int main()
{
queue<pair<int,int> > que;
while(~scanf("%d%d",&N,&K)){
que.push(make_pair(N,0));
while(true){
int s=que.front().first,t=que.front().second;que.pop();
if(s==K){
printf("%d\n",t);
break;
}t++;
que.push(make_pair(s*2,t));
que.push(make_pair(s+1,t));
que.push(make_pair(s-1,t));
}
while(!que.empty()) que.pop();
}
return 0;
}
对上面代码优化后
//Accepted 1028kb 32ms
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
int N,K,ans;
queue<pair<int,int> > que;
bool vis[200010];
int main()
{
while(~scanf("%d%d",&N,&K)){
que.push(make_pair(N,0));
memset(vis,0,sizeof(vis));
while(true){
int s=que.front().first,t=que.front().second;que.pop();
if(s==K){
printf("%d\n",t);
break;
}t++;
if(s<K){
if(!vis[s*2]){
que.push(make_pair(s*2,t));
vis[s*2]=true;
}
if(!vis[s+1]){
que.push(make_pair(s+1,t));
vis[s+1]=true;
}
}
if(s>0&&!vis[s-1]){
que.push(make_pair(s-1,t));
vis[s-1]=true;
}
}
while(!que.empty()) que.pop();
}
return 0;
}

本文介绍了一个经典的最小操作问题——追牛问题,并通过两种不同的方法进行了求解:一种是原始但内存超限的方法;另一种是在此基础上进行优化,通过记录访问状态减少重复计算,最终实现了高效的求解。
1378

被折叠的 条评论
为什么被折叠?



