Towards Universal Unsupervised Anomaly Detection in Medical Imaging
arxiv,19 Jan 2024 【开源】
【核心思想】
本文介绍了一种新的无监督异常检测方法—Reversed Auto-Encoders (RA),旨在提高医学影像中病理检测的准确性和范围。RA通过生成类似健康的重建图像,能够检测到更广泛的病理类型,这在现有技术中是一个挑战。RA方法在多种医学成像模态(如脑部磁共振成像、儿童腕部X光片和胸部X光片)中展示了卓越的检测性能,与现有最先进的方法相比,RA在检测各种病理、解剖结构和成像模态方面都表现出更高的准确性和稳健性。此外,RA的自动异常检测能力在缺乏放射学专业知识的环境中特别有价值。然而,该研究也指出了在检测极其微妙的异常方面的限制,强调了需要改进异常图计算和开发更为复杂的评估指标,以满足临床诊断的精细需求。总的来说,RA框架在医学成像领域展现出巨大潜力,其能够准确地检测广泛的异常,对于推动医学成像与人工智能的结合、提高诊断过程的准确性具有重要意义。
【医学影像中的异常检测的常用方法概述】
- 自监督方法:这些方法通过数据增强或预文本任务生成替代监督信号,利用数据固有特征和有限注释来识别异常。但这些方法可能会在预期的异常分布中引入偏见,尤其是当噪声或人工改变作为真实病理特征的代理时。例如,去噪自编码器(DAE)学习消除人工添加的粗糙高斯噪声,这种方法可能对特定异常(如脑肿瘤)有效,但对更广泛的异常检测应用有限。
- 无监督异常检测:无监督方法旨在从正常人群中学习标准分布,然后将这些知识应用于异常检测。传统的自编码器(AE)和变分自编码器(VAE)在此领域起到了基础性作用。AEs通过编码解码架构捕捉和重建输入数据,假设异常将表现为显著的重建错误。然而,AEs常常难以学习详细的正常解剖特征,并不适合泛化到病理。VAEs通过规范化潜在空间并将其视为概率分布来解决AE的一些局限性。这种规范化允许更受约束的学习过程,使VAEs能更紧密地遵循标准分布。然而,这种规范化经常导致重建的图像模糊,这在识别微妙异常时可能是一个缺点。
- 遮蔽自编码器(MAEs):这些方法也利用了先进的神经网络架构的优势,但从不同的角度来处理异常检测问题。MAEs通过选择性地遮蔽输入数据的部分,并让模型预测这些遮蔽部分来工作。
- 生成对抗网络(GANs):GANs引入了对抗性训练方法,能够生成高度真实的图像。然而,它们可能会遭受模式崩溃,或生成与输入数据不一致的图像。为解决这些挑战,像软内省变分自编码器(SI-VAEs)等进步技术已经出现,它们融合了VAEs和GANs,旨在克服GANs在异常检测中的特定局限性。
- 去噪扩散概率模型(DDPMs):DDPMs采用一种迭代方法,涉及在图像空间中添加和随后去除噪声。然而,DDPMs的一个关键方面在于精心选择噪声水平,这一决策极大地影响它们的性能。
【方法】
1.方法提出的背景
在训练阶段(左),使用多尺度反向嵌入损失 L Reversed \mathcal{L}_{\text {Reversed }} LReversed ,结合证据下界(ELBO)和对抗优化,对编码器和解码器网络进行优化。在此过程中,解码器从随机噪声中生成合成图像,目的是欺骗编码器将其视为真实图像 x fake x_{\text {fake }} xfake 。在推理阶段(右),RA模型处理一个新的输入 x x x ,将其编码并重建为伪健康图像 x p h x_{\mathrm{ph}} xph 。异常检测是通过计算 x x x和 x p h x_{\mathrm{ph}} xph 之间的 L1 范数和感知差异来进行的,从而得到突出显示病理区域的异常图。

将“正常”称为没有病理。给定一组正态样本 x ∈ X ⊂ R N x \in X \subset \mathbb{R}^{N} x∈X⊂RN ,AE的目标是找到函数 f : R N → R D f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{D} f:RN→RD , g : R D → R N g: \mathbb{R}^{D} \rightarrow \mathbb{R}^{N} g:RD→RN 使得 x ≈ g ( f ( x ) ) x \approx g(f(x)) x≈g(f(x)) 。 f f f 分别 g g g 称为编码器和解码器,将 f f f 输入映射到较低维的表示形式。无监督异常检测(UAD)的基本假设是,这些学习的表示包含描述规范分布的特征,即使对于异常样本 x ˉ ∉ X \bar{x} \notin X xˉ∈/X 也是如此。因此, x p h = ( g ( f ( x ˉ ) ) ) ∈ X x_{p h}=(g(f(\bar{x}))) \in \mathcal{X} xph=(g(f(x

本文介绍了一种新的无监督异常检测方法ReversedAuto-Encoders(RA),通过生成健康的重建图像,有效提升了医学影像中病理检测的准确性。RA在多种成像模态中表现出优越性能,尤其在罕见病和细微异常检测上。它结合了ELBO、对抗优化和多尺度反向嵌入,有望推动AI在医学诊断中的应用。
最低0.47元/天 解锁文章
652

被折叠的 条评论
为什么被折叠?



