界面重建——Marching cubes算法

一、引子

对于一个标量场数据,我们可以描绘轮廓(Contouring),包括2D和3D。2D的情况称为轮廓线(contour lines),3D的情况称为表面(surface)。他们都是等值线或等值面。

以下是一个2D例子:

 为了生成轮廓,必须使用某种形式的插值。这是因为我们只在数据集中的一个有限点集上有标量值,而我们的等高线值可能位于这两个点的值之间。由于最常见的插值技术是线性插值,我们通过沿边缘的线性插值在轮廓表面上生成点。如果一条边在其两个端点上有标量值10和0,如果我们试图生成一条值为5的等高线,则边缘插值计算该等高线通过边缘的中点。

二、Marching cubes算法——从2D理解

运用了分治思想,对每个单元格(cell)独立地进行处理。该技术的基本假设是,一个轮廓只能以有限数量的方式通过一个单元格。我们可以构造一个案例表(case table),它枚举一个单元的所有可能的拓扑状态(topological state)。拓扑状态的数量取决于单元格顶点的数量,以及一个顶点相对于轮廓值可以具有的内部/外部关系的数量。标量值大于轮廓值的顶点被称为在轮廓之内。标量值小于轮廓值的顶点被称为在轮廓之外。例如,如果一个单元格有四个顶点,并且每个顶点可以在轮廓内部或外部,则有2^4 = 16种可能的方式通过单元格(在实现时可以用bit来实现)。在案例表中,我们不感兴趣的是轮廓通过单元格的位置(例如,geometrical intersection),感兴趣的只是它如何通过单元格(即单元格中轮廓的topology)。

一旦我们选择好属于哪一种case之后,就可以使用插值来计算contour line与cell edge相交的位置。该算法处理一个单元格,然后移动,或行进到下一个单元格。在访问所有单元格后,将完成轮廓。因此称为marching cubes。

算法的步骤如下:

1. Select a cell.
2. Calculate the inside / outside state of each vertex of the cell.
3. Create an index by storing the binary state of each vertex in a separate bit.
4. Use the index to look up the topological state of the cell in a case table.
5. Calculate the contour location (via interpolation) for each edge in the case table.
 这个过程将在每个单元格中构造独立的几何原元。在单元格边界处,可以创建 重复的顶点和边。这些重复项可以通过使用一个特殊的重合点合并(point merging)操作来消除。请注意,沿着每条边的插值都应该在相同的方向上进行。若不这样,数值舍入很可能导致生成的点不完全一致(not precisely coincident),并且不能正确合并(merge)。这一步骤称为merge coincident points。
三、Marching cubes算法——3D情况
对于6面体,有8个顶点,因此有2^8 = 256中情况,又由于对称性,最后只保留15种情况,如下图:

 四、算法需要注意的事项

在2D中,轮廓模糊(ambiguos cases,如Fig6.5中的Case 5和Case 10)很容易处理:对于每个模糊的情况,我们选择实现两种可能的情况中的一种。根据选择的不同,轮廓可以延伸或打破当前的轮廓,如Fig 6.9所示。任何一种选择都是可以接受的,因为产生的等高线(contour line)将是连续的和封闭的(或将在数据集(data set)边界结束)。

 在3D中,这个问题更为复杂。我们不能简单地选择一个独立于所有其他模糊案例的模糊案例。例如,Fig 6.9显示了如果我们不小心实现了两个相互独立的情况,会发生什么。在这个图中,我们使用了通常的情况3,但用它的互补情况替换了情况6。互补的情况是通过将“暗”顶点与“光”顶点交换而形成的。(这相当于将顶点标量值从等值面值以上切换到等值面值以下,反之亦然。)将这两种情况配对的结果是在等值面上留下了一个孔(hole)。

一个简单而有效的解决方案通过添加额外的互补案例(complementary cases),扩展了原来的15个marching cubes案例。这些情况被设计成与邻近的情况兼容,并防止在等值面上产生孔。需要6个互补的情况,分别对应于行进立方体的情况3、6、7、10、12和13。互补的行进立方体案例如Fig 6.10所示。

 此外,尽管我们说该算法用于规则类型,如四边形和立方体,但marching cubes可以应用于任何拓扑上等同于立方体的单元类型(例如,六面体或非立方体体素)。

五、应用

Fig 6.11d是由marching cubes创建的等值面。图6.11b是一个来自计算机断层扫描(CT)x射线成像系统的恒定图像强度(image intensity)的表面。(图6.11a是该数据的二维子集。)其强度水平对应于人的骨骼。图6.11c为恒定流密度(flow density)的等值面。图6.11d为铁蛋白分子的电子势等值面。由于我们熟悉人体解剖学,图6.11b中所示的图像可以立即被识别出来。然而,对于计算流体动力学和分子生物学领域的从业者来说,图6.11c和图6.11d同样熟悉。正如这些例子所显示的,轮廓形成的方法是各领域可视化数据的强大而又通用的技术。

参考文档:VTKTextBook Scalar Algorithms

要成功地进行Xilinx Zynq-7000 SoC的集成开发,你将需要熟悉TLZ7xH-EVM开发板的硬件特性以及相应的软件编程。在此,我们推荐参考以下资源《创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7》,这将为你的项目提供详尽的支持。 参考资源链接:[创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7](https://wenku.youkuaiyun.com/doc/80nyorov3y) 首先,在硬件编程方面,你需要了解开发板的硬件架构和资源。TLZ7xH-EVM开发板集成了双核ARM Cortex-A9处理器和Kintex-7 FPGA。你应该首先阅读Zynq-7000开发板规格书,了解各个硬件接口和信号引脚的详细信息。根据你的项目需求,进行硬件资源配置,包括配置处理器的时钟频率、电源管理、存储接口以及外设接口等。 其次,在软件编程方面,Xilinx提供了Vivado和SDK套件,用于硬件逻辑设计和软件应用开发。在Vivado中,你需要完成硬件平台的设计和生成,包括创建项目、综合、实现和生成比特流文件。完成硬件设计后,你可以通过Xilinx SDK进行软件编程,创建应用程序和驱动,以与硬件平台交互。编写代码时,你需要参考开发板提供的Demo程序,这些示例程序展示了如何加载和运行用户代码。 确保你具备相关的硬件编程经验,以及掌握至少一种用于嵌入式开发的编程语言,如C/C++。在软件开发过程中,你还需要了解操作系统的选择和配置,比如使用PetaLinux等。 集成开发成功的关键在于硬件和软件的紧密配合,这通常需要进行多次迭代和调试。使用TLZ7xH-EVM开发板上的调试接口,比如JTAG和串口,进行代码调试和性能分析。 在开发过程中,不妨利用创龙科技提供的技术支持和服务,及时解决开发中遇到的问题。此外,你可以利用公司提供的增值服务平台,如定制化开发、培训等,进一步提升开发效率和产品品质。 综上所述,通过阅读相关规格书,使用Vivado和SDK进行硬件设计和软件编程,结合创龙科技的技术支持,你将能够高效地完成Zynq-7000 SoC的集成开发任务。对于那些希望深入学习和探索更多高级功能和技巧的读者,我们再次推荐《创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7》,这份资料不仅帮助你入门,还将引导你掌握更深层次的知识。 参考资源链接:[创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7](https://wenku.youkuaiyun.com/doc/80nyorov3y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值