https://projecteuler.net/problem=27
Quadratic primes
Problem 27
Euler discovered the remarkable quadratic formula:
n² + n + 41
It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41.
The incredible formula n² − 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, −79 and 1601, is −126479.
Considering quadratics of the form:
n² + an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |−4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
首先b一定大于零,其次本想第一个公式算出n,第二个公式只要去验证n+1即可,不需要从0开始计算,不过真正计算的时候,发现事实不是这样的。
看来还是每一个公式从0开始计算的实在,而且速度也不慢。
def QuadraticPrimes():
coefficients = 0
maxnum = 0
for i in range(-999,1000):
for j in range(1,1000):
n = 0
tmp = j
#算出最大的连续n值
while tmp > 0 and isPrime(tmp):
n += 1
tmp = n * n + i * n + j
if maxnum < n:
maxnum = n
coefficients = i * j
return coefficients
#判断n是否是质数,记录一下字典,加快速度
primedict = {}
import math
def isPrime(n):
if n in primedict:return primedict[n]
temp = int(math.sqrt(n)) + 1
for i in range(2,temp):
if n % i == 0:
primedict[n]=False
return False
primedict[n]=True
return True
print(QuadraticPrimes())
本文探讨了Euler发现的奇特二次公式及其应用,通过编程实现找到系数a和b,使得二次多项式n² + an + b产生最多的连续质数,解决了Project Euler第27题。
1万+

被折叠的 条评论
为什么被折叠?



