Amicable numbers

https://projecteuler.net/problem=21


Amicable numbers

Problem 21

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Evaluate the sum of all the amicable numbers under 10000.



def sumAmicable():
    result = 0
    #保存已经计算的数据
    ddict = {}
    for i in range(2,10000):
        if i not in ddict:
            ddict[i] = d(i)
        #对应的值小于i的时候,就不算了,因为我们是从小到大计算过来的
        if ddict[i] > i:
            if ddict[i] not in ddict:
                ddict[ddict[i]] = d(ddict[i])
            if ddict[ddict[i]] == i:
                    result += (ddict[i] + i)
    return result

import math
def d(n):
    factor = [1]
    temp = int(math.sqrt(n))
    for i in range(2,temp +1):
        if n % i == 0:
            factor.append(i)
            factor.append(n/i)
    if temp ** 2 == n:
        return sum(factor) - temp
    return sum(factor) 

print(sumAmicable())


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值