JDK 8 AQS(AbstractQueuedSynchronizer) 源码详解(详细注释版)
1. AQS核心概念
/*
* AbstractQueuedSynchronizer (AQS) 抽象队列同步器
* 是Java并发包中最重要的基础类之一
* 为实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量、事件等)提供框架
*
* AQS的核心思想:
* 1. 使用一个int类型的成员变量state表示同步状态
* 2. 通过内置的FIFO等待队列来完成资源获取的排队工作
* 3. 通过CAS操作保证状态修改的原子性
*
* AQS支持两种资源获取方式:
* - 独占式:同一时刻只有一个线程可以获取资源
* - 共享式:同一时刻可以有多个线程获取资源
*
* AQS的主要应用:
* - ReentrantLock
* - ReentrantReadWriteLock
* - Semaphore
* - CountDownLatch
* - ThreadPoolExecutor.Worker
*/
2. AQS核心数据结构
/*
* AQS核心类源码
*/
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private static final long serialVersionUID = 7373984972572414691L;
/**
* Node内部类 - 等待队列的节点
* 等待队列是CLH (Craig, Landin, and Hagersten) 队列的变体
*/
static final class Node {
// 共享模式标记
static final Node SHARED = new Node();
// 独占模式标记
static final Node EXCLUSIVE = null;
// 线程等待状态常量
static final int CANCELLED = 1; // 线程已取消
static final int SIGNAL = -1; // 线程需要被唤醒
static final int CONDITION = -2; // 线程在等待条件
static final int PROPAGATE = -3; // 传播状态(共享模式下使用)
// 等待状态
volatile int waitStatus;
// 前驱节点
volatile Node prev;
// 后继节点
volatile Node next;
// 当前节点关联的线程
volatile Thread thread;
// 下一个等待节点(条件队列中使用)或共享模式标记
Node nextWaiter;
/**
* 判断是否为共享模式
*/
final boolean isShared() {
return nextWaiter == SHARED;
}
/**
* 获取前驱节点
*/
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // 用于建立初始头或SHARED标记
}
Node(Thread thread, Node mode) { // 用于addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // 用于条件节点
this.waitStatus = waitStatus;
this.thread = thread;
}
}
/*
* AQS核心字段
*/
// 等待队列的头节点
private transient volatile Node head;
// 等待队列的尾节点
private transient volatile Node tail;
// 同步状态
private volatile int state;
/**
* 获取同步状态
*/
protected final int getState() {
return state;
}
/**
* 设置同步状态
*/
protected final void setState(int newState) {
state = newState;
}
/**
* CAS设置同步状态
*/
protected final boolean compareAndSetState(int expect, int update) {
// See below for intrinsics setup to support this
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
// 等待队列是否需要自旋(用于自检)
private static final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}
// Unsafe相关字段和静态初始化
private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe();
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset;
static {
try {
stateOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
headOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next"));
} catch (Exception ex) { throw new Error(ex); }
}
}
3. AQS核心方法实现
/*
* AQS核心同步方法实现
*/
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
/**
* 创建节点并加入等待队列
*
* @param mode Node.EXCLUSIVE 独占模式, Node.SHARED 共享模式
* @return 新创建的节点
*/
private Node addWaiter(Node mode) {
// 创建新节点
Node node = new Node(Thread.currentThread(), mode);
// 尝试快速入队(假设队列尾部不会频繁变化)
Node pred = tail;
if (pred != null) {
node.prev = pred;
// CAS设置尾节点
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 快速入队失败,使用完整入队方法
enq(node);
return node;
}
/**
* 完整的入队操作
*
* @param node 要入队的节点
* @return 节点的前驱节点
*/
private Node enq(final Node node) {
for (;;) { // 自旋直到入队成功
Node t = tail;
if (t == null) { // 队列为空,初始化
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 将节点添加到队列尾部
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
/**
* 设置头节点
*
* @param node 新的头节点
*/
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}
/**
* 唤醒后继节点
*
* @param node 要唤醒其后继的节点
*/
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
// 如果节点状态为负数,尝试将其置为0
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
// 获取后继节点
Node s = node.next;
// 如果后继节点为空或已取消,从尾部向前查找有效节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// 唤醒找到的节点
if (s != null)
LockSupport.unpark(s.thread);
}
/**
* 共享模式下传播释放信号
*
* @param propagate 要传播的资源数
* @param node 当前节点
* @param mode 传播模式
*/
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
/**
* 设置头节点并传播(共享模式)
*
* @param node 新的头节点
* @param propagate 要传播的资源数
*/
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
/**
* 取消正在进行的获取尝试
*
* @param node 要取消的节点
*/
private void cancelAcquire(Node node) {
// 忽略无效节点
if (node == null)
return;
node.thread = null;
// 跳过已取消的前驱节点
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
// predNext是有效的前驱节点的下一个节点
Node predNext = pred.next;
// 设置节点状态为取消
node.waitStatus = Node.CANCELLED;
// 如果是尾节点,移除并更新尾节点
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
// 如果不是尾节点,需要跳过取消的节点
int ws;
if (pred != head &&
((ws = pred.waitStatus) == 0 ||
ws == Node.SIGNAL) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
/**
* 判断是否应该阻塞当前节点
*
* @param pred 节点的前驱
* @param node 当前节点
* @return 如果应该阻塞返回true
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
// 前驱节点状态为SIGNAL,表示当前节点应该被阻塞
return true;
if (ws > 0) {
// 前驱节点已取消,跳过取消的节点
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 设置前驱节点状态为SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
/**
* 中断当前线程
*/
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
/**
* 阻塞当前线程并检查中断状态
*
* @return 如果线程被中断返回true
* @throws InterruptedException 如果线程被中断且中断被抛出
*/
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
/**
* 独占模式下获取资源的核心方法
*
* @param arg 获取资源的参数
* @throws InterruptedException 如果线程被中断
*/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
// 获取前驱节点
final Node p = node.predecessor();
// 如果前驱是头节点且获取资源成功
if (p == head && tryAcquire(arg)) {
setHead(node); // 设置为新头节点
p.next = null; // help GC
failed = false;
return interrupted;
}
// 检查是否应该阻塞,如果应该则阻塞
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* 独占模式下可中断地获取资源
*
* @param arg 获取资源的参数
* @throws InterruptedException 如果线程被中断
*/
private void doAcquireInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* 独占模式下带超时地获取资源
*
* @param arg 获取资源的参数
* @param nanosTimeout 超时时间(纳秒)
* @return 如果成功获取返回true,超时返回false
* @throws InterruptedException 如果线程被中断
*/
private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return true;
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* 共享模式下获取资源的核心方法
*
* @param arg 获取资源的参数
*/
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* 共享模式下可中断地获取资源
*
* @param arg 获取资源的参数
* @throws InterruptedException 如果线程被中断
*/
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/**
* 共享模式下带超时地获取资源
*
* @param arg 获取资源的参数
* @param nanosTimeout 超时时间(纳秒)
* @return 如果成功获取返回true,超时返回false
* @throws InterruptedException 如果线程被中断
*/
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
}
4. AQS对外提供的核心方法
/*
* AQS对外提供的核心同步方法
*/
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
/**
* 独占模式下获取资源
* 子类需要实现tryAcquire方法
*
* @param arg 获取资源的参数
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
/**
* 独占模式下可中断地获取资源
*
* @param arg 获取资源的参数
* @throws InterruptedException 如果线程被中断
*/
public final void acquireInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
/**
* 独占模式下带超时地获取资源
*
* @param arg 获取资源的参数
* @param nanosTimeout 超时时间(纳秒)
* @return 如果成功获取返回true,超时返回false
* @throws InterruptedException 如果线程被中断
*/
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquire(arg) ||
doAcquireNanos(arg, nanosTimeout);
}
/**
* 独占模式下释放资源
* 子类需要实现tryRelease方法
*
* @param arg 释放资源的参数
* @return 如果成功释放返回true
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
/**
* 共享模式下获取资源
* 子类需要实现tryAcquireShared方法
*
* @param arg 获取资源的参数
*/
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
/**
* 共享模式下可中断地获取资源
*
* @param arg 获取资源的参数
* @throws InterruptedException 如果线程被中断
*/
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
/**
* 共享模式下带超时地获取资源
*
* @param arg 获取资源的参数
* @param nanosTimeout 超时时间(纳秒)
* @return 如果成功获取返回true,超时返回false
* @throws InterruptedException 如果线程被中断
*/
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}
/**
* 共享模式下释放资源
* 子类需要实现tryReleaseShared方法
*
* @param arg 释放资源的参数
* @return 如果成功释放返回true
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
/**
* 查询是否有正在等待获取资源的线程
*
* @return 如果有等待线程返回true
*/
public final boolean hasQueuedThreads() {
return head != tail;
}
/**
* 查询是否有线程曾经等待过
*
* @return 如果有线程曾经等待过返回true
*/
public final boolean hasContended() {
return head != null;
}
/**
* 获取队列中的第一个线程(如果不是当前线程)
*
* @return 队列中的第一个线程,如果队列为空返回null
*/
public final Thread getFirstQueuedThread() {
// handle only fast path, else relay
return (head == tail) ? null : fullGetFirstQueuedThread();
}
/**
* 判断给定线程是否在队列中等待
*
* @param thread 要检查的线程
* @return 如果线程在队列中等待返回true
*/
public final boolean isQueued(Thread thread) {
if (thread == null)
throw new NullPointerException();
for (Node p = tail; p != null; p = p.prev)
if (p.thread == thread)
return true;
return false;
}
/**
* 获取等待队列的长度
*
* @return 等待队列的长度
*/
public final int getQueueLength() {
int n = 0;
for (Node p = tail; p != null; p = p.prev) {
if (p.thread != null)
++n;
}
return n;
}
/**
* 获取等待队列中的所有线程集合
*
* @return 等待队列中的所有线程集合
*/
public final Collection<Thread> getQueuedThreads() {
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node p = tail; p != null; p = p.prev) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
return list;
}
/**
* 获取独占模式下等待队列中的所有线程集合
*
* @return 独占模式下等待队列中的所有线程集合
*/
public final Collection<Thread> getExclusiveQueuedThreads() {
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node p = tail; p != null; p = p.prev) {
if (!p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
/**
* 获取共享模式下等待队列中的所有线程集合
*
* @return 共享模式下等待队列中的所有线程集合
*/
public final Collection<Thread> getSharedQueuedThreads() {
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node p = tail; p != null; p = p.prev) {
if (p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
/**
* toString方法
*/
public String toString() {
int s = getState();
String q = hasQueuedThreads() ? "non" : "";
return super.toString() +
"[State = " + s + ", " + q + "empty queue]";
}
// 需要子类实现的抽象方法
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}
}
5. 条件队列相关方法
/*
* AQS条件队列相关方法
*/
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
/**
* ConditionObject内部类 - 条件对象
* 实现了Condition接口
*/
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
// 条件队列的第一个节点
private transient Node firstWaiter;
// 条件队列的最后一个节点
private transient Node lastWaiter;
/**
* 构造方法
*/
public ConditionObject() { }
/**
* 添加等待节点到条件队列
*
* @return 新创建的节点
*/
private Node addConditionWaiter() {
Node t = lastWaiter;
// 如果尾节点状态不是CONDITION,清理取消的节点
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
// 创建新节点并添加到条件队列
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
/**
* 从条件队列转移到同步队列
*
* @param first 要转移的节点
* @return 如果成功转移返回true
*/
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
/**
* 唤醒所有等待节点
*/
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
/**
* 清理取消的等待节点
*/
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
}
/**
* 唤醒一个等待线程
*/
@Override
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
/**
* 唤醒所有等待线程
*/
@Override
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
/**
* 等待条件满足
*/
@Override
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 添加到条件队列
Node node = addConditionWaiter();
// 释放锁
int savedState = fullyRelease(node);
int interruptMode = 0;
// 在同步队列中等待
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 重新获取锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
// 其他await方法的实现...
}
/**
* 完全释放锁
*
* @param node 节点
* @return 释放前的锁状态
*/
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
/**
* 判断节点是否在同步队列中
*
* @param node 节点
* @return 如果在同步队列中返回true
*/
final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
if (node.next != null) // If has successor, it must be on queue
return true;
return findNodeFromTail(node);
}
/**
* 从尾部查找节点
*
* @param node 要查找的节点
* @return 如果找到返回true
*/
private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
/**
* 转移节点到同步队列
*
* @param node 要转移的节点
* @return 如果成功转移返回true
*/
final boolean transferForSignal(Node node) {
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
}
6. 使用示例
/**
* 简单的互斥锁实现示例
*/
public class SimpleLock extends AbstractQueuedSynchronizer {
/**
* 尝试获取锁
*/
@Override
protected boolean tryAcquire(int arg) {
// CAS操作:如果状态为0(未锁定),则设置为1(锁定)
return compareAndSetState(0, 1);
}
/**
* 尝试释放锁
*/
@Override
protected boolean tryRelease(int arg) {
// 设置状态为0(未锁定)
setState(0);
return true;
}
/**
* 判断是否被当前线程独占
*/
@Override
protected boolean isHeldExclusively() {
return getState() == 1;
}
/**
* 获取锁的公共方法
*/
public void lock() {
acquire(1);
}
/**
* 释放锁的公共方法
*/
public void unlock() {
release(1);
}
}
/**
* 简单的信号量实现示例
*/
public class SimpleSemaphore extends AbstractQueuedSynchronizer {
/**
* 构造方法
*
* @param permits 许可数量
*/
public SimpleSemaphore(int permits) {
setState(permits);
}
/**
* 尝试获取许可
*/
@Override
protected int tryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
// 如果剩余许可数小于0,获取失败
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
/**
* 尝试释放许可
*/
@Override
protected boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
}
/**
* 获取许可
*/
public void acquire() throws InterruptedException {
acquireSharedInterruptibly(1);
}
/**
* 释放许可
*/
public void release() {
releaseShared(1);
}
}
/**
* AQS使用示例
*/
public class AQSExample {
public static void main(String[] args) {
// 测试简单锁
testSimpleLock();
// 测试简单信号量
testSimpleSemaphore();
}
private static void testSimpleLock() {
SimpleLock lock = new SimpleLock();
// 启动多个线程竞争锁
for (int i = 0; i < 5; i++) {
final int threadId = i;
new Thread(() -> {
lock.lock();
try {
System.out.println("Thread " + threadId + " acquired lock");
Thread.sleep(1000);
System.out.println("Thread " + threadId + " releasing lock");
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} finally {
lock.unlock();
}
}).start();
}
}
private static void testSimpleSemaphore() {
SimpleSemaphore semaphore = new SimpleSemaphore(2); // 2个许可
// 启动多个线程竞争许可
for (int i = 0; i < 5; i++) {
final int threadId = i;
new Thread(() -> {
try {
semaphore.acquire();
System.out.println("Thread " + threadId + " acquired permit");
Thread.sleep(2000);
System.out.println("Thread " + threadId + " releasing permit");
semaphore.release();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}).start();
}
}
}
7. 核心设计要点总结
7.1 CLH队列变体
- 使用双向链表实现等待队列
- 前驱节点保存后继节点的引用,便于唤醒
- 节点状态机制支持高效的线程阻塞和唤醒
7.2 状态管理
- 使用int类型state表示同步状态
- 通过CAS操作保证状态修改的原子性
- 子类通过重写tryAcquire等方法定义状态语义
7.3 线程阻塞机制
- 使用LockSupport.park/unpark实现线程阻塞和唤醒
- 避免了传统锁的重量级阻塞机制
- 支持中断和超时
7.4 条件队列支持
- 提供ConditionObject实现条件等待
- 支持await/signal等条件操作
- 条件队列与同步队列分离
7.5 性能优化
- 快速路径优化:无竞争时直接获取资源
- 自旋优化:减少不必要的阻塞
- 内存可见性:使用volatile和CAS保证线程安全
7.6 可扩展性
- 模板方法模式:子类实现具体同步逻辑
- 独占和共享两种模式支持不同场景
- 丰富的查询和监控方法
AQS通过这些精心设计,为Java并发包提供了强大而灵活的同步框架,是理解Java并发机制的重要基础。