JDK 8 HashMap 源码详解(完整版带详细注释)
1. 基本结构和常量定义
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
// 默认初始容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 2^4 = 16
// 最大容量 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认负载因子 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 链表转红黑树的阈值,当链表长度大于等于8时转换
static final int TREEIFY_THRESHOLD = 8;
// 红黑树转链表的阈值,当红黑树节点数小于等于6时转换
static final int UNTREEIFY_THRESHOLD = 6;
// 最小树化容量,当容量小于64时优先扩容而不是树化
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储键值对的数组
transient Node<K,V>[] table;
// 键值对集合的视图
transient Set<Map.Entry<K,V>> entrySet;
// 键值对的数量
transient int size;
// 修改次数,用于快速失败机制
transient int modCount;
// 扩容阈值,当size达到threshold时进行扩容
int threshold;
// 负载因子
final float loadFactor;
}
2. Node节点类
// 基本的链表节点结构
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; // 哈希值
final K key; // 键
V value; // 值
Node<K,V> next; // 指向下一个节点的指针
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
// 计算节点的哈希码
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
// 设置值并返回旧值
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个节点是否相等
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
3. 红黑树节点类
// 红黑树节点结构
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 父节点
TreeNode<K,V> left; // 左子节点
TreeNode<K,V> right; // 右子节点
TreeNode<K,V> prev; // 删除时需要的前驱节点
boolean red; // 颜色标志
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
// 获取根节点
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
// 其他红黑树操作方法...
}
4. 构造函数
// 1. 指定初始容量和负载因子的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
// 2. 指定初始容量的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 3. 默认构造函数
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
// 4. 从其他Map构造
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
5. 核心方法实现
5.1 hash计算方法
/**
* 计算key的哈希值
* 使用高16位与低16位异或,目的是在数组较小时也能充分利用高位的信息,
* 减少哈希冲突,提高散列的均匀性
*/
static final int hash(Object key) {
int h;
// key为null时返回0,否则使用hashCode并进行扰动处理
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
5.2 tableSizeFor方法
/**
* 返回大于等于cap的最小2的幂次
* 例如:输入10,返回16;输入17,返回32
*/
static final int tableSizeFor(int cap) {
int n = cap - 1; // 减1是为了处理cap本身就是2的幂次的情况
// 通过位运算将最高位的1向右传播,最终得到一个低位全为1的数
n |= n >>> 1; // 将最高位的1向右传播1位
n |= n >>> 2; // 向右传播2位
n |= n >>> 4; // 向右传播4位
n |= n >>> 8; // 向右传播8位
n |= n >>> 16; // 向右传播16位
// 最终结果加1就是大于等于cap的最小2的幂次
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
5.3 put方法
/**
* 添加键值对到HashMap中
* 如果key已存在,则更新value并返回旧值
* 如果key不存在,则添加新键值对并返回null
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* 实际的put操作
* @param hash key的哈希值
* @param key 键
* @param value 值
* @param onlyIfAbsent 如果为true,则不改变已存在的值
* @param evict 如果为false,表示是创建模式
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果table为空或长度为0,则进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 计算索引位置,如果该位置为空,直接插入新节点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// 该位置已有节点,需要处理冲突
Node<K,V> e; K k;
// 如果第一个节点的key相同,记录该节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 如果是红黑树节点,在树中查找或插入
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 链表处理
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// 到达链表末尾,插入新节点
p.next = newNode(hash, key, value, null);
// 如果链表长度达到阈值,转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果找到相同的key,跳出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果找到了相同的key,更新value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 如果size超过阈值,进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
5.4 resize扩容方法
/**
* 扩容方法,当HashMap中的元素数量超过阈值时调用
* 扩容策略:容量翻倍,重新计算所有元素的位置
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 根据当前状态计算新容量和新阈值
if (oldCap > 0) {
// 如果原容量已达到最大值,不再扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新容量为原容量的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // 新阈值为原阈值的2倍
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果新阈值为0,重新计算
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 如果原table不为空,需要重新hash
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// 只有一个节点,直接重新计算索引
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 红黑树节点的split操作
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 链表节点的重新分布
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 核心优化:根据hash值的高位判断节点在新数组中的位置
// 如果为0,位置不变;如果为1,位置变为原位置+oldCap
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 低位链表保持原位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 高位链表移到新位置
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
5.5 get方法
/**
* 根据key获取对应的value
* 如果key不存在,返回null
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* 根据hash和key获取节点
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 检查第一个节点(优化:最常用的情况)
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 如果是红黑树节点,在树中查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 链表查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
5.6 remove方法
/**
* 移除指定key的映射关系
* 返回被移除的value,如果key不存在则返回null
*/
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
/**
* 移除节点的核心方法
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 检查第一个节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 如果是红黑树节点
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
// 链表查找
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 找到节点后进行删除操作
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
// 红黑树删除
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
// 删除头节点
tab[index] = node.next;
else
// 删除链表中间节点
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
5.7 treeifyBin方法
/**
* 将链表转换为红黑树
* 当链表长度达到阈值且数组容量足够大时才会进行转换
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 如果数组容量小于最小树化容量,优先扩容而不是树化
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
// 将链表节点转换为树节点
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
// 建立红黑树结构
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
6. 其他重要方法
6.1 containsKey方法
/**
* 判断是否包含指定的key
*/
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
6.2 size和isEmpty方法
/**
* 返回HashMap中键值对的数量
*/
public int size() {
return size;
}
/**
* 判断HashMap是否为空
*/
public boolean isEmpty() {
return size == 0;
}
7. 总结
7.1 JDK 8 HashMap的主要优化
-
引入红黑树:当链表长度超过8且数组容量大于等于64时,链表转换为红黑树,查找时间复杂度从O(n)优化为O(log n)
-
扩容优化:扩容时利用hash值的高位信息,将原链表分为两部分,避免重新计算所有元素的hash值
-
扰动函数优化:hash方法中使用高16位与低16位异或,提高散列均匀性
-
链表插入优化:采用尾插法,避免多线程环境下形成环形链表的问题
7.2 时间复杂度分析
- 最好情况:O(1) - 无冲突
- 平均情况:O(1) - 哈希函数均匀分布
- 最坏情况:O(log n) - 红黑树查找(JDK 8之前为O(n))
7.3 空间复杂度
- O(n) - n为存储的键值对数量
7.4 注意事项
- 线程不安全:HashMap不是线程安全的,多线程环境下需要使用ConcurrentHashMap
- 允许null键值:可以存储null键和null值
- 无序性:不保证元素的插入顺序
- 负载因子:默认0.75,平衡时间和空间开销
这个实现通过巧妙的设计,在保证高效查找的同时,也考虑了内存使用和性能优化,是Java集合框架中的经典实现。