抖音式短视频推荐系统开发方案

抖音式短视频推荐系统开发方案

系统架构设计

graph TD
    A[数据源] --> B[数据采集]
    B --> C[数据存储]
    C --> D[离线处理]
    C --> E[实时处理]
    D --> F[特征工程]
    E --> F
    F --> G[召回层]
    F --> H[粗排层]
    F --> I[精排层]
    G --> J[候选集生成]
    H --> K[初步排序]
    I --> L[最终排序]
    L --> M[重排优化]
    M --> N[推荐服务]
    N --> O[API网关]
    O --> P[客户端]
    
    subgraph 数据源
        A1[用户行为日志]
        A2[视频内容元数据]
        A3[社交关系数据]
        A4[外部热点数据]
    end
    
    subgraph 数据采集
        B1[Kafka] -->|实时流| 实时处理
        B2[Flume] -->|批量日志| 离线处理
        B3[Sqoop] -->|关系型数据| 离线处理
    end
    
    subgraph 数据存储
        C1[HDFS] -->|离线数据| 离线处理
        C2[HBase] -->|实时特征| 实时处理
        C3[Redis] -->|缓存特征| 推荐服务
        C4[Neo4j] -->|社交图谱| 社交关系
    end
    
    subgraph 离线处理
        D1[Spark] -->|特征计算| 特征工程
        D2[Hive] -->|离线模型训练| 模型服务
    end
    
    subgraph 实时处理
        E1[Flink] -->|实时特征更新| 特征工程
        E2[Storm] -->|实时行为分析| 候选集生成
    end
    
    subgraph 推荐服务
        N1[Spring Cloud] -->|API服务| API网关
        N2[gRPC] -->|高性能调用| 客户端
    end

在这里插入图片描述


核心模块实现

1. 数据采集与存储

多源数据采集
// 用户行为日志生产者(Kafka)
public class UserBehaviorProducer {
    private static final String BOOTSTRAP_SERVERS = "kafka1:9092,kafka2:9092";
    private static final String TOPIC = "user_behavior";

    public void sendBehaviorEvent(UserBehaviorEvent event) {
        Properties props = new Properties();
        props.put("bootstrap.servers", BOOTSTRAP_SERVERS);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        try (Producer<String, String> producer = new KafkaProducer<>(props)) {
            String eventJson = new ObjectMapper().writeValueAsString(event);
            producer.send(new ProducerRecord<>(TOPIC, event.getUserId(), eventJson));
        } catch (JsonProcessingException e) {
            logger.error("Failed to serialize event", e);
        }
    }
}

// 视频内容元数据采集(Flume)
public class VideoMetadataSource extends AbstractSource implements Configurable {
    private String hdfsPath;
    private FileSystem fs;

    @Override
    public void configure(Context context) {
        hdfsPath = context.getString("hdfs.path");
        fs = FileSystem.get(new Configuration());
    }

    @Override
    public Status process() throws EventDeliveryException {
        // 从HDFS拉取视频元数据(MP4/JSON)
        FileStatus[] statuses = fs.listStatus(new Path(hdfsPath));
        for (FileStatus status : statuses) {
            String metadata = new String(fs.getContent(status.getPath()));
            // 发送到Kafka
            getChannelProcessor().processEvent(EventBuilder.withBody(metadata.getBytes()));
        }
        return Status.READY;
    }
}
数据存储设计
数据类型存储介质用途示例
用户行为日志HDFS + Kafka离线训练+实时特征更新观看记录、点赞、评论、分享
视频元数据HBase + Hive视频内容检索+特征提取标签、时长、作者、音乐、分辨率
社交关系Neo4j + Redis社交推荐+粉丝关系链关注列表、粉丝列表、共同好友
实时特征Redis + HBase在线推荐特征查询用户兴趣向量、视频热度、近期观看偏好
模型参数HDFS + TensorFlow Serving模型部署+在线推理DeepFM权重、DIN嵌入向量

2. 特征工程

用户特征提取
// 使用Spark计算用户兴趣向量(基于协同过滤)
val userBehavior = spark.read.parquet("hdfs:///data/user_behavior")
  .select("user_id", "item_id", "behavior_type", "timestamp")

// 计算用户-物品交互矩阵
val userItemMatrix = userBehavior
  .groupBy("user_id", "item_id")
  .agg(count("*").as("interaction_count"))

// 使用ALS分解隐向量
val als = new ALS()
  .setUserCol("user_id")
  .setItemCol("item_id")
  .setRatingCol("interaction_count")
  .setRank(64)
  .setMaxIter(10)
  .setRegParam(0.01)

val model = als.fit(userItemMatrix)
val userFactors = model.userFactors // 用户隐向量(64维)
视频特征提取
# 使用ResNet提取视频帧特征(PyTorch)
import torch
from torchvision import models, transforms

# 加载预训练模型
model = models.resnet50(pretrained=True)
model = torch.nn.Sequential(*(list(model.children())[:-1])) # 去掉全连接层
model.eval()

# 视频帧预处理
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 提取视频关键帧特征
def extract_video_features(video_path):
    frames = extract_frames(video_path) # 使用OpenCV提取关键帧
    features = []
    for frame in frames:
        tensor = transform(frame).unsqueeze(0)
        with torch.no_grad():
            feature = model(tensor).squeeze().numpy()
        features.append(feature)
    return np.mean(features, axis=0) # 平均池化

# 存储视频特征到HBase
def save_video_features(video_id, features):
    connection = happybase.Connection('hbase-host')
    table = connection.table('video_features')
    table.put(video_id, {
        b'cf:features': features.tobytes(),
        b'cf:metadata': json.dumps({'duration': 60, 'author_id': 'author123'}).encode()
    })
上下文特征
// 实时上下文特征提取(Flink)
public class ContextFeatureExtractor 
    extends KeyedProcessFunction<String, UserBehaviorEvent, ContextFeatures> {
    
    private transient ValueState<ContextState> state;
    
    @Override
    public void open(Configuration parameters) {
        ValueStateDescriptor<ContextState> descriptor = 
            new ValueStateDescriptor<>("context-state", ContextState.class);
        state = getRuntimeContext().getState(descriptor);
    }
    
    @Override
    public void processElement(
        UserBehaviorEvent event, 
        Context ctx, 
        Collector<ContextFeatures> out) throws Exception {
        
        ContextState currentState = state.value();
        if (currentState == null) {
            currentState = new ContextState();
            currentState.setUserId(event.getUserId());
            currentState.setTimeWindow(new TimeWindow(ctx.timestamp(), ctx.timestamp() + 60000)); // 1分钟窗口
        }
        
        // 更新上下文状态
        currentState.update(event);
        state.update(currentState);
        
        // 生成上下文特征
        ContextFeatures features = new ContextFeatures();
        features.setHourOfDay(ctx.timestamp() / 3600000 % 24);
        features.setDayOfWeek(ctx.timestamp() / 86400000 % 7);
        features.setRecentViewedItems(currentState.getRecentItems());
        features.setDeviceType(event.getDeviceType());
        
        out.collect(features);
    }
}

3. 多阶段推荐算法

召回层(Retrieval)

目标:从百万级视频中快速筛选千级候选集
方法

  • 协同过滤召回:基于用户历史行为的相似物品(ItemCF)
  • 内容匹配召回:用户兴趣向量与视频特征向量的余弦相似度
  • 哈希索引召回:对视频标签/作者ID做哈希分桶,快速定位候选
// ItemCF召回(Spark)
val userItemInteractions = spark.read.parquet("hdfs:///data/user_behavior")
  .filter("behavior_type IN ('view', 'like', 'purchase')")
  .groupBy("user_id", "item_id")
  .agg(count("*").as("weight"))

// 计算物品相似度矩阵
val itemSimilarity = userItemInteractions
  .groupBy("item_id")
  .agg(collect_list(struct("cooccurrence_item_id", "weight")).as("similar_items"))
  .cache()

// 为用户生成候选集
def getRecallItems(userId: String, topN: Int = 1000): Array[String] = {
    val userInteractions = userItemInteractions.filter(col("user_id") === userId)
    val similarItems = userInteractions.flatMap { row =>
        val itemId = row.getAs"item_id"
        val similarities = itemSimilarity.filter(col("item_id") === itemId)
          .select("similar_items.*")
          .as[SimilarItem]
        similarities.map(si => (si.cooccurrenceItemId, si.weight))
    }.groupBy("cooccurrenceItemId")
      .agg(sum("weight").as("total_weight"))
      .orderBy(desc("total_weight"))
    
    similarItems.limit(topN).select("cooccurrenceItemId").as[String].collect()
}
粗排层(Pre-Ranking)

目标:对候选集初步排序,过滤低质量视频
方法:轻量级模型(如LR、LightGBM)
特征:用户兴趣向量、视频热度(播放量/点赞数)、内容标签匹配度、作者粉丝量

# LightGBM粗排模型(Python)
import lightgbm as lgb

# 特征工程
def build_features(user_features, video_features, context_features):
    features = {
        "user_age": user_features["age"],
        "user_gender": user_features["gender"],
        "video_play_count": video_features["play_count"],
        "video_like_count": video_features["like_count"],
        "tag_match": cosine_similarity(user_features["interest_vector"], video_features["tag_vector"]),
        "author_fans": video_features["author_fans"],
        "hour_of_day": context_features["hour_of_day"]
    }
    return pd.DataFrame([features])

# 模型训练
train_data = spark.read.parquet("hdfs:///data/train_data")
X_train = build_features(train_data["user_features"], train_data["video_features"], train_data["context_features"])
y_train = train_data["label"]  # 0/1表示是否点击

model = lgb.LGBMClassifier(
    num_leaves=31,
    learning_rate=0.05,
    n_estimators=100,
    metric="auc"
)
model.fit(X_train, y_train)

# 粗排预测
def pre_rank(user_id, candidates):
    user_features = get_user_features(user_id)
    scores = []
    for video_id in candidates:
        video_features = get_video_features(video_id)
        context_features = get_context_features()
        X = build_features(user_features, video_features, context_features)
        score = model.predict_proba(X)[0][1]
        scores.append((video_id, score))
    return sorted(scores, key=lambda x: -x[1])[:200]  # 取前200
精排层(Ranking)

目标:精确排序,优化CTR/CVR
方法:深度学习模型(如DeepFM、DIN、Transformer)
特征:用户长期兴趣(Embedding)、短期行为序列(RNN/Transformer)、视频多模态特征(视觉+文本)

# DeepFM精排模型(TensorFlow)
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, Dense, Concatenate, FM

# 特征配置
user_features = {
    "user_id": {"vocab_size": 1e6, "emb_dim": 64},
    "gender": {"vocab_size": 3, "emb_dim": 8},
    "age_group": {"vocab_size": 10, "emb_dim": 8}
}

video_features = {
    "video_id": {"vocab_size": 5e5, "emb_dim": 64},
    "category": {"vocab_size": 100, "emb_dim": 16},
    "author_id": {"vocab_size": 1e5, "emb_dim": 32}
}

# 构建DeepFM模型
def build_deepfm_model():
    # 用户特征输入
    user_inputs = {
        "user_id": Input(shape=(1,), name="user_id"),
        "gender": Input(shape=(1,), name="gender"),
        "age_group": Input(shape=(1,), name="age_group")
    }
    
    # 视频特征输入
    video_inputs = {
        "video_id": Input(shape=(1,), name="video_id"),
        "category": Input(shape=(1,), name="category"),
        "author_id": Input(shape=(1,), name="author_id")
    }
    
    # 嵌入层
    user_emb = {k: Embedding(v["vocab_size"], v["emb_dim"])(v_in) 
               for k, v_in in user_inputs.items() for k, v in user_features.items()}
    video_emb = {k: Embedding(v["vocab_size"], v["emb_dim"])(v_in) 
                for k, v_in in video_inputs.items() for k, v in video_features.items()}
    
    # FM部分
    fm_input = Concatenate(axis=1)([
        Flatten()(user_emb["user_id"]),
        Flatten()(video_emb["video_id"]),
        Flatten()(user_emb["gender"]),
        Flatten()(video_emb["category"])
    ])
    fm_output = FM()(fm_input)
    
    # DNN部分
    dnn_input = Concatenate(axis=1)([
        Flatten()(user_emb["age_group"]),
        Flatten()(video_emb["author_id"])
    ])
    dnn_output = Dense(128, activation="relu")(dnn_input)
    dnn_output = Dense(64, activation="relu")(dnn_output)
    
    # 输出层
    output = Dense(1, activation="sigmoid")(Concatenate()([fm_output, dnn_output]))
    
    model = tf.keras.Model(
        inputs=list(user_inputs.values()) + list(video_inputs.values()),
        outputs=output
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["auc"])
    return model
重排层(Re-Ranking)

目标:优化多样性、覆盖率、用户体验
方法

  • 多样性控制:基于类别/标签的去重(如限制同一作者视频不超过2个)
  • 新颖性提升:引入冷门视频(播放量<1万但质量分高)
  • 场景适配:根据用户使用场景(如睡前、通勤)调整推荐策略
// 重排策略(Java)
public class ReRanker {
    private static final int MAX_CATEGORY = 5; // 最多保留5个不同类别
    private static final int MAX_AUTHOR = 2;   // 同一作者最多2个视频
    
    public List<Video> reRank(List<Video> candidates) {
        // 1. 按精排分数排序
        candidates.sort((a, b) -> Double.compare(b.getScore(), a.getScore()));
        
        // 2. 多样性控制:按类别去重
        Map<String, Video> categoryMap = new HashMap<>();
        for (Video video : candidates) {
            String category = video.getCategory();
            if (!categoryMap.containsKey(category) && categoryMap.size() < MAX_CATEGORY) {
                categoryMap.put(category, video);
            }
        }
        
        // 3. 新颖性控制:加入冷门视频
        List<Video> coldVideos = getColdVideos(candidates); // 从候选集中筛选播放量低的视频
        List<Video> result = new ArrayList<>(categoryMap.values());
        result.addAll(coldVideos.stream().limit(10).collect(Collectors.toList()));
        
        // 4. 去重同一作者
        Set<String> authorSet = new HashSet<>();
        List<Video> finalResult = new ArrayList<>();
        for (Video video : result) {
            if (!authorSet.contains(video.getAuthorId()) && finalResult.size() < 30) {
                authorSet.add(video.getAuthorId());
                finalResult.add(video);
            }
        }
        
        return finalResult;
    }
}

4. 实时推荐服务

在线推理服务
// 推荐服务接口(Spring Boot)
@RestController
@RequestMapping("/recommend")
public class RecommendationController {
    
    @Autowired
    private RecommendationService recommendationService;
    
    @GetMapping("/{userId}")
    public ResponseEntity<List<Video>> getRecommendations(
            @PathVariable String userId,
            @RequestParam(defaultValue = "30") int count) {
        
        // 1. 获取实时特征
        UserFeatures userFeatures = featureStore.getUserFeatures(userId);
        ContextFeatures context = featureStore.getContextFeatures(userId);
        
        // 2. 召回候选集
        List<String> candidateIds = recallService.getRecallItems(userId, 1000);
        
        // 3. 粗排+精排
        List<Video> recommendations = rankingService.rank(
            userFeatures, 
            candidateIds, 
            context, 
            count
        );
        
        // 4. 重排优化
        recommendations = reRanker.reRank(recommendations);
        
        return ResponseEntity.ok(recommendations);
    }
}
性能优化
// 多级缓存策略(Caffeine + Redis)
public class VideoCache {
    private static final Caffeine<Object, Object> localCache = Caffeine.newBuilder()
        .maximumSize(1000)
        .expireAfterWrite(5, TimeUnit.MINUTES)
        .build();
    
    private static final RedisCacheClient redisCache = new RedisCacheClient("redis-host", 6379);
    
    public Video getVideo(String videoId) {
        // 1. 本地缓存
        Video video = (Video) localCache.get(videoId);
        if (video != null) {
            return video;
        }
        
        // 2. Redis缓存
        video = redisCache.get(videoId, Video.class);
        if (video != null) {
            localCache.put(videoId, video);
            return video;
        }
        
        // 3. 数据库查询
        video = videoService.getVideoFromDB(videoId);
        if (video != null) {
            redisCache.put(videoId, video, 30, TimeUnit.MINUTES); // 缓存30分钟
            localCache.put(videoId, video);
        }
        
        return video;
    }
}

5. 冷启动解决方案

新用户推荐
public class NewUserRecommender {
    
    // 基于人口统计的初始推荐
    public List<Video> getDemographicRecommendations(User user) {
        String sql = "SELECT video_id, score FROM demographic_recommendations " +
                    "WHERE age_group = ? AND gender = ? AND city = ? " +
                    "ORDER BY score DESC LIMIT 30";
        
        return jdbcTemplate.query(sql,
            new Object[]{user.getAgeGroup(), user.getGender(), user.getLocation()},
            new VideoRowMapper());
    }
    
    // 基于热门内容的推荐
    public List<Video> getHotRecommendations() {
        String sql = "SELECT video_id, play_count FROM videos " +
                    "ORDER BY play_count DESC LIMIT 30";
        
        return jdbcTemplate.query(sql, new VideoRowMapper());
    }
}
新视频推荐
public class NewVideoRecommender {
    
    // 基于内容相似度的推荐
    public List<Video> getContentSimilarRecommendations(Video newVideo) {
        // 使用视频特征向量计算相似度
        String sql = "SELECT similar_video_id, similarity FROM video_similarity " +
                    "WHERE video_id = ? " +
                    "ORDER BY similarity DESC LIMIT 30";
        
        return jdbcTemplate.query(sql,
            new Object[]{newVideo.getVideoId()},
            (rs, rowNum) -> {
                Video video = new Video();
                video.setVideoId(rs.getString("similar_video_id"));
                video.setScore(rs.getDouble("similarity"));
                return video;
            });
    }
    
    // 基于作者的推荐
    public List<Video> getAuthorBasedRecommendations(Video newVideo) {
        String authorId = newVideo.getAuthorId();
        String sql = "SELECT video_id FROM videos " +
                    "WHERE author_id = ? AND video_id != ? " +
                    "ORDER BY publish_time DESC LIMIT 30";
        
        return jdbcTemplate.query(sql,
            new Object[]{authorId, newVideo.getVideoId()},
            new VideoRowMapper());
    }
}

6. 监控与优化

关键监控指标
指标类型具体指标阈值/说明
性能指标推荐延迟(ms)< 200ms
QPS(每秒请求数)> 10万
效果指标CTR(点击率)目标值:8%-12%
完播率(视频播放完成比例)目标值:30%-40%
互动率(点赞+评论+分享)目标值:5%-8%
质量指标推荐多样性(类别覆盖数)> 10
冷门视频占比10%-20%
A/B测试框架
-- 实验效果评估(CTR对比)
SELECT 
    experiment_group,
    COUNT(DISTINCT user_id) AS users,
    SUM(CASE WHEN event_type = 'click' THEN 1 ELSE 0 END) AS clicks,
    SUM(CASE WHEN event_type = 'impression' THEN 1 ELSE 0 END) AS impressions,
    ROUND(SUM(CASE WHEN event_type = 'click' THEN 1 ELSE 0 END) * 1.0 / 
          SUM(CASE WHEN event_type = 'impression' THEN 1 ELSE 0 END), 4) AS ctr
FROM recommendation_events
WHERE experiment_id = 'exp_20240715'
  AND event_time BETWEEN '2024-07-15' AND '2024-07-22'
GROUP BY experiment_group;

-- 转化漏斗分析
WITH funnel AS (
    SELECT 
        user_id,
        MAX(CASE WHEN event_type = 'impression' THEN 1 ELSE 0 END) AS impression,
        MAX(CASE WHEN event_type = 'click' THEN 1 ELSE 0 END) AS click,
        MAX(CASE WHEN event_type = 'purchase' THEN 1 ELSE 0 END) AS purchase
    FROM recommendation_events
    WHERE experiment_id = 'exp_20240715'
      AND event_time BETWEEN '2024-07-15' AND '2024-07-22'
    GROUP BY user_id
)
SELECT 
    COUNT(*) AS total_users,
    SUM(impression) AS impressions,
    SUM(click) AS clicks,
    SUM(purchase) AS purchases,
    ROUND(SUM(click)*1.0/SUM(impression), 4) AS ctr,
    ROUND(SUM(purchase)*1.0/SUM(click), 4) AS cvr
FROM funnel;

总结

抖音式短视频推荐系统的核心在于海量数据的实时处理多阶段精准排序个性化体验优化。通过分层架构设计(数据层→算法层→服务层),结合协同过滤、深度学习等算法,以及实时特征工程和缓存策略,能够支撑亿级用户的低延迟推荐需求。同时,冷启动策略和A/B测试机制确保了系统的持续优化能力。

该方案的优势:

  • 高实时性:毫秒级响应,满足用户即时需求
  • 强个性化:基于用户行为、兴趣、上下文的多维度推荐
  • 高多样性:通过重排策略避免信息茧房
  • 可扩展性:分布式架构支持业务规模增长

适用于短视频平台、直播推荐、内容社区等场景,为企业提供数据驱动的用户增长解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值