Java并发工具类:ThreadPoolExecutor详解
一、核心特性与定位
1.1 线程池核心实现
ThreadPoolExecutor是Java并发包(JUC)中实现线程池管理的核心类,通过复用线程资源降低线程创建/销毁开销,提供任务队列、拒绝策略等高级特性,适用于需要高效管理并发任务的场景。
类结构定位:
1.2 核心特性矩阵
特性 | 行为表现 | 适用场景 |
---|---|---|
核心线程池 | 长期存活的线程集合 | 基础并发能力 |
任务队列 | 阻塞队列缓冲待执行任务 | 流量削峰 |
拒绝策略 | 队列满时的任务处理策略 | 高并发防护 |
动态参数调整 | 运行时修改线程池配置 | 弹性伸缩场景 |
生命周期管理 | 支持优雅关闭 | 系统平稳退出 |
二、核心机制解析
2.0. 类结构
public class ThreadPoolExecutor extends AbstractExecutorService {
// 核心参数
private volatile int corePoolSize;
private volatile int maximumPoolSize;
private volatile long keepAliveTime;
private volatile BlockingQueue<Runnable> workQueue;
private volatile ThreadFactory threadFactory;
private volatile RejectedExecutionHandler handler;
// 线程池状态与线程数(高3位存储状态,低29位存储线程数)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// 状态常量
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// 工作线程集合
private final HashSet<Worker> workers = new HashSet<>();
// 核心方法:执行任务
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) { // 1. 创建核心线程
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) { // 2. 任务入队
int recheck = ctl.get();
if (!isRunning(recheck) && remove(command)) // 3. 线程池关闭时拒绝任务
reject(command);
else if (workerCountOf(recheck) == 0) // 4. 空线程池时创建非核心线程
addWorker(null, false);
}
else if (!addWorker(command, false)) // 5. 创建非核心线程失败,触发拒绝策略
reject(command);
}
// 核心方法:添加工作线程
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
if (rs >= SHUTDOWN && !(rs == SHUTDOWN && firstTask == null && !workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c)) // CAS 增加线程数
break retry;
c = ctl.get();
if (runStateOf(c) != rs)
continue retry;
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask); // 创建 Worker 对象
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive())
throw new IllegalThreadStateException();
workers.add(w); // 添加到工作线程集合
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start(); // 启动线程
workerStarted = true;
}
}
} finally {
if (!workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
// 内部类:工作线程
private final class Worker extends AbstractQueuedSynchronizer implements Runnable {
private final Thread thread;
private Runnable firstTask;
Worker(Runnable firstTask) {
this.firstTask = firstTask;
this.thread = threadFactory.newThread(this); // 通过线程工厂创建线程
}
public void run() {
runWorker(this); // 执行任务
}
}
// 核心方法:执行工作线程
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock();
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) { // 循环获取任务
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task); // 执行前钩子
Throwable thrown = null;
try {
task.run(); // 执行任务
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown); // 执行后钩子
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly); // 处理线程退出
}
}
// 核心方法:获取任务(可能阻塞)
private Runnable getTask() {
boolean timedOut = false;
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); // 从队列获取任务
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
// 核心方法:处理线程退出
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly)
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w); // 从工作线程集合移除
} finally {
mainLock.unlock();
}
tryTerminate(); // 尝试终止线程池
}
}
2.0.1. 关键方法详解
-
execute(Runnable command)
:- 提交任务到线程池,根据当前线程数和队列状态决定创建线程或拒绝任务。
-
addWorker(Runnable firstTask, boolean core)
:- 创建并启动工作线程(
Worker
对象),核心线程或非核心线程由core
参数控制。
- 创建并启动工作线程(
-
runWorker(Worker w)
:- 工作线程的主循环,不断从任务队列获取任务并执行。
-
getTask()
:- 从任务队列获取任务,支持超时(非核心线程空闲超时)。
-
processWorkerExit(Worker w, boolean completedAbruptly)
:- 清理退出线程的资源,尝试终止线程池。
2.1 线程管理模型
线程工厂模式:
// 自定义线程工厂
public class CustomThreadFactory implements ThreadFactory {
private final AtomicInteger count = new AtomicInteger(1);
private final String namePrefix;
public CustomThreadFactory(String poolName) {
this.namePrefix = poolName + "-worker-";
}
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r, namePrefix + count.getAndIncrement());
t.setUncaughtExceptionHandler((thread, ex) ->
log.error("Uncaught exception: {}", ex));
return t;
}
}
2.2 任务执行流程
2.3 拒绝策略实现
内置策略:
// AbortPolicy(默认)
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
// CallerRunsPolicy
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
三、典型使用场景
3.1 异步任务处理
订单处理系统:
// 核心线程数=CPU核数,队列=SynchronousQueue
ExecutorService orderProcessor = new ThreadPoolExecutor(
Runtime.getRuntime().availableProcessors(),
Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<>(),
new CustomThreadFactory("order-pool"));
// 提交订单处理任务
orderProcessor.execute(() -> processOrder(order));
3.2 定时任务调度
周期性数据同步:
// 创建定时任务线程池
ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(4,
new CustomThreadFactory("schedule-pool"));
// 提交周期性任务
scheduler.scheduleAtFixedRate(() -> {
syncDataToRemote();
}, 0, 1, TimeUnit.HOURS);
3.3 资源隔离
多业务线隔离:
// 不同业务线使用独立线程池
Map<String, ExecutorService> poolRegistry = new ConcurrentHashMap<>();
public ExecutorService getBusinessPool(String business) {
return poolRegistry.computeIfAbsent(business, k ->
new ThreadPoolExecutor(
4, 16,
60L, TimeUnit.SECONDS,
new LinkedBlockingQueue<>(1024),
new CustomThreadFactory(business + "-pool")
)
);
}
四、最佳实践
4.1 参数配置原则
容量规划公式:
- 核心线程数:
N_cpu = Runtime.getRuntime().availableProcessors()
- 最大线程数:
N_cpu * U_cpu * (1 + W/C)
- U_cpu:目标CPU利用率(0-1)
- W/C:等待时间与计算时间的比值
队列选择策略:
场景 | 推荐队列类型 |
---|---|
低延迟要求 | SynchronousQueue |
高吞吐量要求 | LinkedBlockingQueue |
优先级调度 | PriorityBlockingQueue |
有界资源控制 | ArrayBlockingQueue |
4.2 监控与调优
关键监控指标:
// 自定义监控实现
ThreadPoolExecutor pool = (ThreadPoolExecutor) executor;
Metrics.gauge("threadpool.active", pool::getActiveCount);
Metrics.gauge("threadpool.queue.size", pool::getQueue::size);
Metrics.gauge("threadpool.completed", pool::getCompletedTaskCount);
动态调优示例:
// 根据负载动态调整核心线程数
if (pool.getActiveCount() > pool.getCorePoolSize() * 0.8) {
pool.setCorePoolSize(Math.min(pool.getCorePoolSize() + 4,
pool.getMaximumPoolSize()));
}
4.3 优雅关闭
三阶段关闭流程:
// 关闭流程
public void shutdownGracefully(ExecutorService pool) {
// 1. 停止接收新任务
pool.shutdown();
// 2. 等待任务完成(带超时)
try {
if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
// 3. 强制终止剩余任务
pool.shutdownNow();
}
} catch (InterruptedException e) {
pool.shutdownNow();
Thread.currentThread().interrupt();
}
}
五、常见问题与解决方案
5.1 线程泄漏问题
现象:
- 活跃线程数持续增加
- 任务队列堆积但线程数未达上限
解决方案:
// 线程工厂添加存活日志
public class DebugThreadFactory implements ThreadFactory {
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setUncaughtExceptionHandler((thread, ex) ->
log.error("Thread {} died: {}", thread.getName(), ex));
log.debug("Created thread: {}", t.getName());
return t;
}
}
// 使用示例
ExecutorService pool = new ThreadPoolExecutor(4, 16, 60, TimeUnit.SECONDS,
new LinkedBlockingQueue<>(1024), new DebugThreadFactory());
5.2 任务拒绝
典型场景:
- 突发流量超过队列容量
- 长时间阻塞任务填满队列
预防措施:
// 自定义预警拒绝策略
public class AlertingAbortPolicy implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
log.warn("Task {} rejected from {}", r, executor);
Metrics.counter("task.rejected").inc();
throw new RejectedExecutionException("Task rejected");
}
}
5.3 性能瓶颈定位
诊断工具链:
- JFR飞行记录:
java -XX:StartFlightRecording=filename=threadpool.jfr,settings=profile -jar app.jar
- Async Profiler:
./profiler.sh -d 60 -f flamegraph.html <pid>
- 线程转储分析:
# 查找阻塞线程 jstack <pid> | grep -A 20 "BLOCKED"
六、高级特性应用
6.1 装饰器模式扩展
监控增强实现:
// 任务执行装饰器
public class MonitoringDecorator implements Runnable {
private final Runnable delegate;
private final long startTime;
public MonitoringDecorator(Runnable delegate) {
this.delegate = delegate;
this.startTime = System.nanoTime();
}
@Override
public void run() {
try {
delegate.run();
} finally {
long duration = System.nanoTime() - startTime;
Metrics.histogram("task.duration", duration);
}
}
}
// 使用示例
ExecutorService pool = Executors.newFixedThreadPool(4);
pool = Executors.newSingleThreadExecutor(() ->
new MonitoringDecorator(pool.submit(() -> {})));
6.2 上下文传递
TransmittableThreadLocal集成:
// 使用TTL装饰线程池
ExecutorService ttlPool = TtlExecutors.getTtlExecutorService(pool);
// 提交携带上下文的任务
try (TtlContext context = TtlContext.newContext()) {
context.put("traceId", UUID.randomUUID().toString());
ttlPool.submit(() -> {
String currentTrace = TtlContext.get().getString("traceId");
log.info("Processing with traceId: {}", currentTrace);
});
}
6.3 弹性伸缩
动态参数调整:
// 根据负载动态调整线程池参数
ScheduledExecutorService adjustor = Executors.newSingleThreadScheduledExecutor();
adjustor.scheduleAtFixedRate(() -> {
int active = pool.getActiveCount();
int queueSize = pool.getQueue().size();
if (active > pool.getCorePoolSize() * 0.8 &&
pool.getCorePoolSize() < pool.getMaximumPoolSize()) {
pool.setCorePoolSize(pool.getCorePoolSize() + 1);
}
if (queueSize > 1000 && pool.getMaximumPoolSize() < 128) {
pool.setMaximumPoolSize(pool.getMaximumPoolSize() + 16);
}
}, 0, 5, TimeUnit.SECONDS);
七、源码关键逻辑
-
ctl 字段:
- 使用位运算(高3位存储状态,低29位存储线程数)高效管理线程池状态和线程数。
-
Worker 对象:
- 每个工作线程封装为
Worker
对象,继承自AbstractQueuedSynchronizer
实现简单的锁机制。
- 每个工作线程封装为
-
任务队列交互:
- 通过
workQueue.offer()
和workQueue.take()
实现任务缓冲和阻塞获取。
- 通过
八、总结
ThreadPoolExecutor
通过灵活的参数配置和高效的任务调度机制,实现了线程池的核心功能。其源码核心在于:
- ctl 字段管理:位运算高效管理线程池状态和线程数。
- Worker 线程模型:通过
Worker
对象封装工作线程,实现任务循环执行。 - 任务队列交互:与
BlockingQueue
协作,实现任务缓冲和流量控制。
理解其源码有助于在并发编程中合理配置线程池,避免资源竞争和性能瓶颈。