如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?

在深度学习的发展史中,每一次架构层级的突破,都往往伴随着一种范式的转变。从卷积神经网络(CNN)引领计算机视觉,到循环神经网络(RNN)与LSTM带动自然语言处理的第一次腾飞,再到Transformer构建的语言模型帝国,每一次技术的跃迁都改变了“模型训练”和“模型应用”的基本关系。而如今,一个引发广泛思考的新架构理念正渐渐出现——Test-Time Training(简称TTT),正在重新定义模型训练的“时间维度”。

TTT 的本质在于:打破传统“训练-测试分离”的学习范式,在模型推理阶段动态更新权重,以适应特定任务或环境分布的偏移。这听起来或许像是“模型自我修正”,甚至“即时学习”的早期形态。它挑战了人们对“泛化能力”的传统定义,也触及了机器学习系统自主适应能力的核心议题。

这不仅仅是一次工程技巧的革新,而是一种方法论的重构。从固定权重的预训练-微调模式,转向“可塑”的推理机制,TTT 的出现提出了一个深远的问题:模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?

图片

1. TTT 的起源:从训练/测试分离到动态推理

深度学习的主流范式自始至终都基于这样一个假设:模型在训练阶段学习通用模式,在测试阶段保持权重固定,通过“泛化能力”去应对未知数据分布。

这种做法虽然理论简洁、实现清晰,但在真实世界中经常受挫。因为训练数据和测试数据的分布通常并不一致,即所谓的“分

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

concisedistinct

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值