解决ValueError:not enough values to unpack 省略

幸福总是一样的,Bug却各有各的不同:看问题源码->

原因是格式转化代码重复写了两行,去除下面一行line = line.decode('UTF-8') #转化为unicode再次运行,OK!

 

--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[13], line 6 4 for epoch in range(epochs): 5 train_ds=data_load("MNIST_Data/train",batch_size).take(2500) ----> 6 train_loop(model, train_ds) 7 test_ds=data_load("MNIST_Data/test",batch_size).take(1000) 8 loss,accuracy=test_loop(model, test_ds, loss_fn) Cell In[12], line 33, in train_loop(model, dataset) 31 # train_step(data, label) 32 for data,label in dataset: ---> 33 loss = train_step(data, label) 34 if step%100==0: 35 print(f"step: {step}, loss: {loss}") Cell In[12], line 20, in train_step(data, label) 19 def train_step(data, label): ---> 20 (loss, _), grads = grad_fn(data, label) 21 optimizer(grads) 22 # t=count() 23 # if t%10==0: 24 # print("累计100个") File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\ops\composite\base.py:638, in _Grad.__call__.<locals>.after_grad(*args, **kwargs) 637 def after_grad(*args, **kwargs): --> 638 return grad_(fn_, weights)(*args, **kwargs) File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\common\api.py:187, in _wrap_func.<locals>.wrapper(*arg, **kwargs) 185 @wraps(fn) 186 def wrapper(*arg, **kwargs): --> 187 results = fn(*arg, **kwargs) 188 return _convert_python_data(results) File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\ops\composite\base.py:610, in _Grad.__call__.<locals>.after_grad(*args, **kwargs) 608 @_wrap_func 609 def after_grad(*args, **kwargs): --> 610 run_args, res = self._pynative_forward_run(fn, grad_, weights, *args, **kwargs) 611 if self.has_aux: 612 out = _pynative_executor.grad_aux(fn, grad_, weights, grad_position, *run_args) File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\ops\composite\base.py:671, in _Grad._pynative_forward_run(self, fn, grad, weights, *args, **kwargs) 669 _pynative_executor.set_grad_flag(True) 670 _pynative_executor.new_graph(fn, *args, **kwargs) --> 671 outputs = fn(*args, **kwargs) 672 _pynative_executor.end_graph(fn, outputs, *args, **kwargs) 673 run_forward = True File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\ops\composite\base.py:578, in _Grad.__call__.<locals>.aux_fn(*args, **kwargs) 577 def aux_fn(*args, **kwargs): --> 578 outputs = fn(*args, **kwargs) 579 if not isinstance(outputs, tuple) or len(outputs) < 2: 580 raise ValueError("When has_aux is True, origin fn requires more than one outputs.") Cell In[12], line 12, in forward_fn(data, label) 11 def forward_fn(data, label): ---> 12 logits = model(data) 13 loss = loss_fn(logits, label) 14 return loss, logits File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\nn\cell.py:1355, in Cell.__call__(self, *args, **kwargs) 1352 if not (self.requires_grad or self._dynamic_shape_inputs or self.mixed_precision_type): 1353 if not (self._forward_pre_hook or self._forward_hook or self._backward_pre_hook or self._backward_hook or 1354 self._shard_fn or self._recompute_cell or (self.has_bprop and _pynative_executor.requires_grad())): -> 1355 return self.construct(*args, **kwargs) 1357 return self._run_construct(*args, **kwargs) 1359 return self._complex_call(*args, **kwargs) Cell In[11], line 123, in QCNN.construct(self, x) 121 x = self.flatten(x) # (B, 200) 122 logits = self.classifier(x) --> 123 logits=self.qconv(logits) 124 return logits File D:\10_The_Programs\4_The_Codes\00_virtual_environment\DeepLearning\Lib\site-packages\mindspore\nn\cell.py:1355, in Cell.__call__(self, *args, **kwargs) 1352 if not (self.requires_grad or self._dynamic_shape_inputs or self.mixed_precision_type): 1353 if not (self._forward_pre_hook or self._forward_hook or self._backward_pre_hook or self._backward_hook or 1354 self._shard_fn or self._recompute_cell or (self.has_bprop and _pynative_executor.requires_grad())): -> 1355 return self.construct(*args, **kwargs) 1357 return self._run_construct(*args, **kwargs) 1359 return self._complex_call(*args, **kwargs) Cell In[11], line 60, in QuantumConvLayer.construct(self, x) 58 def construct(self, x): 59 # x shape: (B, C, H, W), e.g., (B, 1, 10, 10) ---> 60 b, c, h, w = x.shape 61 k, s = self.k, self.s 63 # 确保尺寸可整除 ValueError: not enough values to unpack (expected 4, got 2) 以上报错是什么意思?
最新发布
10-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值