[TopCoder] SRM 578 DIV 2, Goose In Zoo, Solution

本文介绍了一个有趣的算法问题:在动物园的鹅笼中寻找鹅的位置。通过分析问题特点,将其转化为图论中的连通区域问题,并给出了解决方案。文章详细解释了如何利用曼哈顿距离确定鹅的位置,并通过计算连通区域数量来确定可能的鹅群组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Statement

     Crow Keith is looking at the goose cage in the zoo. The bottom of the cage is divided into a grid of square cells. There are some birds sitting on those cells (with at most one bird per cell). Some of them are geese and all the others are ducks. Keith wants to know which birds are geese. He knows the following facts about them:
  • There is at least one goose in the cage.
  • Each bird within Manhattan distance dist of any goose is also a goose.

You are given a vector <string> field and the int dist. The array field describes the bottom of the cage. Each character of each element of field describes one of the cells. The meaning of individual characters follows.

  • The character ‘v’ represents a cell that contains a bird.
  • The character ‘.’ represents an empty cell.

Return the number of possible sets of geese in the cage, modulo 1,000,000,007. Note that for some of the test cases there can be no possible sets of geese.

Definition

    
Class: GooseInZooDivTwo
Method: count
Parameters: vector <string>, int
Returns: int
Method signature: int count(vector <string> field, int dist)
(be sure your method is public)
    

Notes

- The Manhattan distance between cells (a,b) and (c,d) is |a-c| + |b-d|, where || denotes absolute value. In words, the Manhattan distance is the smallest number of steps needed to get from one cell to the other, given that in each step you can move to a cell that shares a side with your current cell.

Constraints

- field will contain between 1 and 50 elements, inclusive.
- Each element of field will contain between 1 and 50 characters, inclusive.
- Each element of field will contain the same number of characters.
- Each character of each element of field will be ‘v’ or ‘.’.
- dist will be between 0 and 100, inclusive.

Examples

0)
    
{"vvv"}
0
Returns: 7
There are seven possible sets of positions of geese: “ddg”, “dgd”, “dgg”, “gdd”, “gdg”, “ggd”, “ggg” (‘g’ are geese and ‘d’ are ducks).
1)
    
{"."}
100
Returns: 0
The number of geese must be positive, but there are no birds in the cage.
2)
    
{"vvv"}
1
Returns: 1

[Thoughts]
这道题非常有意思。刚拿到题的时候,第一个想法就是,这不是八皇后的变形吗? DFS一通到底就好了。但是细细的品味之后,发现这个不是这么简单。这道题其实是图论中连通区域的变形。
在题目中已经说了,给定任意一个点,如果该节点是一只鹅,那么所有与该鹅在曼哈顿距离以内的节点都是鹅。换句话说,所有与该鹅在曼哈顿距离以内的,都是连通的,可以收缩成一个节点,因为他们的行为时一致的,要么都是鹅,要么都不是鹅。
到这里,题目就变形为,在一个二维数组里面,找出连通区域的个数。然后对连通区域数求排列(这里就是2的幂数)。
计算大数取余的时候,要考虑溢出,通过迭代法计算。
(a*b)%m=(a%m*b%m )%m;
[Code]
懒得自己写了,偷用Zhongwen的 code
1:  #define pb push_back  
2: #define INF 100000000000
3: #define L(s) (int)((s).size())
4: #define FOR(i,a,b) for (int _n(b), i(a); i<=_n; i++)
5: #define rep(i,n) FOR(i,1,(n))
6: #define rept(i,n) FOR(i,0,(n)-1)
7: #define C(a) memset((a), 0, sizeof(a))
8: #define ll long long
9: #define VI vector<int>
10: #define ppb pop_back
11: #define mp make_pair
12: #define MOD 1000000007
13: struct Node {
14: int x;
15: int y;
16: Node(int a, int b) : x(a), y(b) { }
17: };
18: int toInt(string s){ istringstream sin(s); int t; sin>>t;return t;}
19: vector<Node> GooseInZooDivTwo::flood(vector<string> &field, vector<vector<bool> > &visit, int x, int y, int dist, int m, int n)
20: {
21: vector<Node> ret;
22: queue<Node> S;
23: visit[x][y] = true;
24: S.push(Node(x, y));
25: while (!S.empty())
26: {
27: Node cur = S.front();
28: ret.pb(S.front());
29: S.pop();
30: for (int i = max(0, cur.x-dist); i <= min(m-1, cur.x+dist); i++)
31: {
32: for (int j = max(0, cur.y-dist); j <= min(n-1, cur.y+dist); j++)
33: {
34: if (field[i][j] == 'v' && !visit[i][j] && (abs(i-cur.x)+abs(j-cur.y) <=dist))
35: {
36: S.push(Node(i, j));
37: visit[i][j] = true;
38: }
39: }
40: }
41: }
42: return ret;
43: }
44: int GooseInZooDivTwo::count(vector <string> field, int dist) {
45: int m = L(field);
46: if (!m) return 0;
47: int n = L(field[0]);
48: vector<vector<bool> > visit(m, vector<bool>(n, false));
49: vector<vector<Node> > ret;
50: rept(i, m)
51: {
52: rept(j, n)
53: {
54: if (field[i][j] == 'v' && !visit[i][j])
55: {
56: ret.pb(flood(field, visit, i, j, dist, m, n));
57: }
58: }
59: }
60: if (!L(ret)) return 0;
61: long num=1;
62: for(int i =0; i< L(ret); i++) //要考虑排列溢出的情况
63: {
64: num*=2;
65: if(num> MOD)
66: {
67: num = num % MOD;
68: }
69: }
70: return num-1;
71: }

标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值