5. 进阶关卡-MindSearch深度解析实践
部署MindSearch到 hugging face Spaces上。
MindSearch 是一个开源的 AI 搜索引擎框架,具有与 Perplexity.ai Pro 相同的性能。我们可以轻松部署它来构建自己的专属搜索引擎,可以基于闭源的LLM(如GPT、Claude系列),也可以使用开源的LLM(如经过专门优化的InternLM2.5 系列模型,能够在MindSearch框架中提供卓越的性能) 最新版的MindSearch拥有以下特性:
- 🤔 任何你想知道的问题:MindSearch 通过搜索解决你在生活中遇到的各种问题
- 📚 深度知识探索:MindSearch 通过数百个网页的浏览,提供更广泛、深层次的答案
- 🔍 透明的解决方案路径:MindSearch 提供了思考路径、搜索关键词等完整的内容,提高回复的可信度和可用性。
- 💻 多种用户界面:为用户提供各种接口,包括 React、Gradio、Streamlit 和本地调试。根据需要选择任意类型。
- 🧠 动态图构建过程:MindSearch 将用户查询分解为图中的子问题节点,并根据 WebSearcher 的搜索结果逐步扩展图。
部署启动MindSearch
开发环境
使用github codespace,创建conda环境隔离并安装依赖:
- 在codespace创建一个相应的虚拟环境来隔离
conda create -n mindsearch python=3.10 -y
conda init
- 如果是新建的codespace,在第一次创建conda环境时,需要conda init,再另启一个终端并activate
conda activate mindsearch
cd /workspaces/codespaces-blank
git clone https://github.com/InternLM/MindSearch.git && cd MindSearch && git checkout ae5b0c5
pip install -r requirements.txt
获取硅基流动API KEY
注册https://cloud.siliconflow.cn/,并创建API Key。
启动后端
由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们在一个终端A中可以直接执行下面的代码来启动 MindSearch 的后端。
export SILICON_API_KEY=<上面复制的API KEY>
conda activate mindsearch
# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch --asy
- –lang: 模型的语言,en 为英语,cn 为中文。
- –model_format: 模型的格式。
- internlm_silicon 为 InternLM2.5-7b-chat 在硅基流动上的API模型
- –search_engine: 搜索引擎。
- DuckDuckGoSearch 为 DuckDuckGo 搜索引擎。
- BingSearch 为 Bing 搜索引擎。
- BraveSearch 为 Brave 搜索引擎。
- GoogleSearch 为 Google Serper 搜索引擎。
- TencentSearch 为 Tencent 搜索引擎。
启动前端
在后端启动完成后,我们打开新终端B运行如下命令来启动 MindSearch 的前端:
conda activate mindsearch
# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python frontend/mindsearch_gradio.py
上面的例子中我们使用的是DuckDuckGoSearch,因此你也可以尝试其他的搜索引擎API。如我们可以替换为BingSearch 或者 TencentSearch 进行尝试。
# BingSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine BingSearch --asy
# TencentSearch
# python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine TencentSearch --asy
部署到自己的 HuggingFace Spaces上
首先我们找到InternLM官方部署的MindSearch Spaces应用,选择Duplicate this Space
:
复制后等待Spaces应用启动,当启动好后上方会显示绿色的running标志,进行输入测试:
测试时可能会发现页面卡住了很久(两三分钟),我们可以查看日志,最后两行可能报如下错误:
graph.add_edge(start_node="root", end_node("contract_enforcement"))
SyntaxError: positional argument follows keyword argument
此时需要在页面右上角选择Restart Space,等待重启完成后重试。
SyntaxError: positional argument follows keyword argument
此时需要在页面右上角选择Restart Space,等待重启完成后重试。