4. 进阶关卡-InternVL多模态模型部署微调实践

InternVL多模态模型部署微调实践

基础任务(完成此任务即完成闯关)

  • 理解多模态大模型的常见设计模式,可以大概讲出多模态大模型的工作原理。
  • 了解InternVL2的设计模式,可以大概描述InternVL2的模型架构和训练流程。
  • 了解LMDeploy部署多模态大模型的核心代码,并运行提供的gradio代码,在UI界面体验与InternVL2的对话。
  • 了解XTuner,并利用给定数据集微调InternVL2-2B后,再次启动UI界面,体验模型美食鉴赏能力的变化。
  • 将训练好的模型上传到 Hugging Face 或 ModelScope 上,模型名称包含 InternVL 关键词(优秀学员必做)

环境配置

训练环境配置

新建虚拟环境并进入:

conda create --name xtuner-env python=3.10 -y
conda activate xtuner-env

xtuner-env为训练环境名,可以根据个人喜好设置,在本教程中后续提到训练环境均指"xtuner-env"环境。

安装与deepspeed集成的xtuner和相关包:

pip install xtuner==0.1.23 timm==1.0.9
pip install 'xtuner[deepspeed]'
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0 tokenizers==0.15.2 peft==0.13.2 datasets==3.1.0 accelerate==1.2.0 huggingface-hub==0.26.5 

训练环境既为安装成功。

推理环境配置

配置推理所需环境:

conda create -n lmdeploy python=3.10 -y
conda activate lmdeploy
pip install lmdeploy==0.6.1 gradio==4.44.1 timm==1.0.9

lmdeploy为推理使用环境名。

LMDeploy部署多模态大模型并基于UI进行交互

核心部署代码

主要通过pipeline.chat 接口来构造多轮对话管线,核心代码为:

## 1.导入相关依赖包
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from lmdeploy.vl import load_image

## 2.使用你的模型初始化推理管线
model_path = "your_model_path"
pipe = pipeline(model_path,
                backend_config=TurbomindEngineConfig(session_len=8192))
                
## 3.读取图片(此处使用PIL读取也行)
image = load_image('your_image_path')

## 4.配置推理参数
gen_config = GenerationConfig(top_p=0.8, temperature=0.8)
## 5.利用 pipeline.chat 接口 进行对话,需传入生成参数
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
## 6.之后的对话轮次需要传入之前的session,以告知模型历史上下文
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)

网页应用部署体验

拉取教程github仓库:

git clone https://github.com/Control-derek/InternVL2-Tutorial.git
cd InternVL2-Tutorial

demo.py文件中,MODEL_PATH处传入InternVL2-2B的路径,如果使用的是InternStudio的开发机则无需修改,否则改为模型路径。

启动demo:

conda activate lmdeploy
python demo.py

运行后配置ssh端口转发,vscode下操作会自动配置,在本地打开浏览器访问:

InternVL-UI

微调InternVL2-2B

准备配置文件

cd /root
git clone https://github.com/InternLM/xtuner.git
conda activate xtuner-env

原始internvl的微调配置文件在路径./xtuner/configs/internvl/v2下,假设上面克隆的仓库在/root/InternVL2-Tutorial,复制配置文件到目标目录下:

cp /root/InternVL2-Tutorial/xtuner_config/internvl_v2_internlm2_2b_lora_finetune_food.py /root/xtuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_lora_finetune_food.py

配置文件参数解读

internvl_v2_internlm2_2b_lora_finetune_food.py

在第一部分的设置中,有如下参数:

  • path: 需要微调的模型路径,在InternStudio环境下,无需修改。
  • data_root: 数据集所在路径。
  • data_path: 训练数据文件路径。
  • image_folder: 训练图像根路径。
  • prompt_temple: 配置模型训练时
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lldhsds

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值