勇于创新,勤于探索 —— 我的创作纪念日

作者主页:爱笑的男孩。的博客_优快云博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.youkuaiyun.com/Code_and516?type=blog个人简介:打工人。

持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com 

我的创作者纪念日


目录

最初的创作初心

在创作的过程中都有哪些收获

获得了多少粉丝的关注

获得了多少正向的反馈,如赞、评论、阅读量

认识和哪些志同道合的领域同行

你过去写得最好的一段代码是什么? 请用代码块贴出来

职业规划、创作规划 

职业规划

创作规划


最初的创作初心

        时间过得真快,一年转眼就过去了。翻看去年写的创作者纪念日文章,发现自己已经有了很多变化,变得更加成熟,眼界也有了一些提升。回顾之前,有很多感悟吧,却又难以言表,只能用一口叹息来表达。

        回顾过去的一年,有一些惊喜,也有一些懊悔。惊喜的是我不知不觉中已经发布了79篇文章,并且在工作期间遇到了一些难题,翻看自己之前发布的解决方法,发现自己曾经遇到过相同的问题,并记录了下来。这让我省了很多麻烦,感叹自己当时的聪明才智,仿佛有一种未卜先知的能力,预知了未来会遇到的问题并记录下来,真是不费吹灰之力。有时候我会在解决问题后想到:“以前的自己真厉害,居然能预见到以后会遇到相同的麻烦,并记录下来给以后的自己看,有那么一瞬间脑子里突然就蹦出来一句话:真是 踏破铁鞋无觅处,得来全不费工夫 呐,哈哈哈。”这种感觉真的很奇妙。

        然而,最近这段时间我却没有发布过文章了,很多解决问题的思路都没有记录下来,这让我感到懊悔。我意识到自己有些懒散,没有保持之前的记录习惯。回想起之前的自己能够如此勤奋地记录,我真的有些后悔。或许这是一种提醒,告诉我要重新拾起记录的习惯,不要让自己的懒惰阻碍了进步。

        在过去的一年里,我有了很多收获和成长,也有了一些遗憾和反思。我希望在未来的日子里,能够更加努力地记录和分享,不断提升自己的能力,为自己的成长做出更大的努力。

        当然了,我创作的初心呢,还是不变的,就是想帮助别人的同时可以做一个自己的笔记。嘿嘿~

在创作的过程中都有哪些收获

  • 获得了多少粉丝的关注

        去年创作日的时候,我记录了自己当时的粉丝量为992个,距离千个粉丝就差8个。

        现在,我的粉丝量已经破千啦,达到了1469个,谢谢你们~

  • 获得了多少正向的反馈,如赞、评论、阅读量

        去年,我获得了198次点赞、185次评论、200次收藏、总阅读量40000+;

        

        今年,我获得了425次点赞、297次评论、865次收藏、总阅读量170000+;真的没有想到今年比去年多了这么多人访问我的文章,谢谢各位,我会继续努力的!!!

  • 认识和哪些志同道合的领域同行

        在过去的一年里,我参加了多次人工智能开发者大会(AIGC),与许多技术大牛们面对面交流。他们的讲话和指导让我受益匪浅,学到了许多宝贵的技术知识和经验。这些交流经历不仅拓宽了我的视野,也激发了我对技术创新的热情。参加AIGC开发者大会是我成长道路上的重要一步,我会珍惜这些宝贵的学习机会,不断提升自己的技术水平,为未来的发展打下坚实的基础!!

你过去写得最好的一段代码是什么? 请用代码块贴出来

        ResNet18 ,这个源码比较简单,其原理也容易理解,所以我就把他贴出来吧~

        详细地址:ResNet18详细原理(含tensorflow版源码)

 
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers,datasets,models
 
 
 
def main():
    (train_x,train_y),(test_x,test_y) = datasets.cifar10.load_data()
 
    train_x = train_x.reshape([-1,32,32,3]) / 255.0
    test_x = test_x.reshape([-1,32,32,3]) / 255.0
 
    inputs = keras.Input((32,32,3))
 
    output = ResNet18(inputs)
 
    model = models.Model(inputs,output)
 
    model.summary()
 
    model.compile(loss = keras.losses.SparseCategoricalCrossentropy(),
                  optimizer=keras.optimizers.Adam(0.01),
                  metrics=['accuracy'])
    model.fit(train_x,train_y,batch_size=128,epochs=10)
 
    score = model.evaluate(test_x,test_y)
    print("loss:",score[0])
    print("acc:",score[1])
    pass
 
def ConvCall(x,filtten,xx,yy,strides = (1,1)):
    x = layers.Conv2D(filtten,(xx,yy),strides=strides,padding='same')(x)
    x = layers.BatchNormalization()(x)
    return x
 
def ResNetblock(input,filtten,strides = (1,1)):
    x = ConvCall(input,filtten,3,3,strides=strides)
    x = layers.Activation("relu")(x)
 
    x = ConvCall(x,filtten,3,3,strides=(1,1))
    if strides != (1,1):
        residual = ConvCall(input,filtten,1,1,strides=strides)
    else:
        residual = input
 
    x = x + residual
    x = layers.Activation("relu")(x)
 
    return x
 
def ResNet18(inputs):
    x = ConvCall(inputs, 64, 3, 3, strides=(1, 1))
    x = layers.Activation('relu')(x)
 
    x = ResNetblock(x, 64, strides=(1, 1))
    x = ResNetblock(x, 64, strides=(1, 1))
 
    x = ResNetblock(x, 128, strides=(2, 2))
    x = ResNetblock(x, 128, strides=(1, 1))
 
    x = ResNetblock(x, 256, strides=(2, 2))
    x = ResNetblock(x, 256, strides=(1, 1))
 
    x = ResNetblock(x, 512, strides=(2, 2))
    x = ResNetblock(x, 512, strides=(1, 1))
    x = layers.GlobalAveragePooling2D()(x)  # 全局平均池化
    output = layers.Dense(10, "softmax")(x)
    return output
 
 
if __name__ == '__main__':
    main()

职业规划、创作规划 

  • 职业规划

        在职业规划方面,我将继续努力加强自己的技术能力。作为算法工程师,行业竞争激烈,只有不断提升自己的技术水平,才能保持领先地位。因此,我会持续学习最新的技术趋势和算法,不断提升自己的能力,以应对快速变化的行业需求。 

  • 创作规划

        作为业余爱好创作者,我的创作规划还是主要围绕着解决日常BUG、python和深度学习展开,总结就三点:

  1. 专注解决日常问题
  2. 持续学习Python技术并分享知识
  3. 深入学习深度学习,不断提升自我

        我会继续努力加强技术能力,专注解决实际问题,通过这些努力,我还是希望能够不断提高自己的技术水平,成为更加优秀的业余爱好创作者,把技术变为生活的一部分,让自己在成长道路上更上一层楼。 

AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
内容概要:本文介绍了基于物PINN驱动的三维声波波动方程求解(Matlab代码实现)理信息神经网络(PINN)求解三维声波波动方程的Matlab代码实现方法,展示了如何利用PINN技术在无需大量标注数据的情况下,结合物理定律约束进行偏微分方程的数值求解。该方法将神经网络与物理方程深度融合,适用于复杂波动问题的建模与仿真,并提供了完整的Matlab实现方案,便于科研人员理解和复现。此外,文档还列举了多个相关科研方向和技术服务内容,涵盖智能优化算法、机器学习、信号处理、电力系统等多个领域,突出其在科研仿真中的广泛应用价值。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事计算物理、声学仿真、偏微分方程数值解等相关领域的研究人员; 使用场景及目标:①学习并掌握PINN在求解三维声波波动方程中的应用原理与实现方式;②拓展至其他物理系统的建模与仿真,如电磁场、热传导、流体力学等问题;③为科研项目提供可复用的代码框架和技术支持参考; 阅读建议:建议读者结合文中提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注PINN网络结构设计、损失函数构建及物理边界条件的嵌入方法,同时可借鉴其他案例提升综合仿真能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱笑的男孩。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值