
目录
MobilneNetV2原理
MobileNetV2是由谷歌开发的一种用于移动设备的轻量级卷积神经网络。与传统卷积神经网络相比,它具有更高的计算效率和更小的模型尺寸,可以在移动设备上实现高精度的图像识别任务。
MobileNetV2的主要原理是使用深度可分离卷积来减少模型的参数数量和计算量。深度可分离卷积将传统的卷积操作分解为两个独立的操作:深度卷积和逐点卷积。深度卷积仅在通道维度上进行卷积操作,而逐点卷积仅在空间维度上进行卷积操作。这种分解能大大降低计算复杂度,同时保持较高的分类精度。
另外,MobileNetV2还使用了线性瓶颈函数来加速网络训练,以及Inverted Residuals结构来充分使用低维特征信息。
线性瓶颈结构:

MobileNetV2两种残差块:

它还采用了轻量级的特征网络Design Spaces提升性能的策略,优化卷积核大小和数量,调整网络宽度和深度,最终得到一个更加高效的网络。网络结构图如下:

MobileNetV2的创新点:
MobileNetV2相较于MobileNetV1在以下方面进行了创新:
-
Inverted Residuals:MobileNetV2使用了Inverted Residuals结构,将输入先进行低维变换,再使用残差模块加上上采样,最后使用1x1卷积进行通道变换,从而减少计算量。
-
Linear Bottlenecks: MobileNetV2使用1x1卷积核将输入通道数缩小到一个较小的值,然后进行卷积操作,最后再使用1x1卷积通道扩展回原来的通道数。这样可以减少计算量和参数量,同时提高模型准确度。
-
使用深度可分离卷积:MobileNetV2中使用了深度可分离卷积,在计算相同的特征图时用的参数远少于传统卷积。而且,深度可分离卷积允许使用不同的卷积核、池化层和标准化层,从而提高了模型的

MobileNetV2是谷歌为移动设备设计的轻量级CNN,采用深度可分离卷积减少计算量和模型大小。其创新点包括InvertedResiduals结构和线性瓶颈,提高性能并保持高精度。与MobileNetV1相比,V2在性能和效率上有显著提升,适合移动设备上的图像识别任务。
最低0.47元/天 解锁文章
1412





