codeforces 453A. Little Pony and Expected Maximum (概率与期望+快速幂)

本文探讨了在已知骰子面数和投掷次数的情况下,如何计算预期最大点数的方法。采用概率与期望结合快速幂算法求解,通过计算不同最大值的概率来得出最终答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Little Pony and Expected Maximum
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she kept losing. Having returned to the castle, Twilight Sparkle became interested in the dice that were used in the game.

The dice has m faces: the first face of the dice contains a dot, the second one contains two dots, and so on, the m-th face contains mdots. Twilight Sparkle is sure that when the dice is tossed, each face appears with probability . Also she knows that each toss is independent from others. Help her to calculate the expected maximum number of dots she could get after tossing the dice n times.

Input

A single line contains two integers m and n (1 ≤ m, n ≤ 105).

Output

Output a single real number corresponding to the expected maximum. The answer will be considered correct if its relative or absolute error doesn't exceed 10  - 4.

Examples
input
6 1
output
3.500000000000
input
6 3
output
4.958333333333
input
2 2
output
1.750000000000
Note

Consider the third test example. If you've made two tosses:

  1. You can get 1 in the first toss, and 2 in the second. Maximum equals to 2.
  2. You can get 1 in the first toss, and 1 in the second. Maximum equals to 1.
  3. You can get 2 in the first toss, and 1 in the second. Maximum equals to 2.
  4. You can get 2 in the first toss, and 2 in the second. Maximum equals to 2.

The probability of each outcome is 0.25, that is expectation equals to:

You can read about expectation using the following link: http://en.wikipedia.org/wiki/Expected_value



题解:概率与期望+快速幂

f[i]表示i是最大值的概率

f[i]=(i/m)^n+((i-1)/m)^n 表示每次掷出1..i任意个的概率-每次都无法掷得i的概率(即每次掷出的数是1..(i-1))

ans+=f[i]*i

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m;
double quickpow(double num,int x)
{
	double ans=1; double base=num;
	while (x) {
		if (x&1) ans=ans*base;
		x>>=1;
		base*=base; 
	}
	return ans;
}
int main()
{
	scanf("%d%d",&n,&m);
	double pre=0; double ans=0;
	for (int i=1;i<=n;i++) {
		double p=quickpow(i*1.0/n,m);
		ans+=i*1.0*(p-pre);
		pre=p;
	}
	printf("%.9lf\n",ans);
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值