计算机视觉中的深度学习:卷积神经网络详解与小数据集训练策略
1. 卷积神经网络基础
在计算机视觉领域,卷积神经网络(Convolutional Neural Networks, CNN)展现出了卓越的性能。以MNIST数据集为例,我们可以看到CNN相较于传统的全连接网络有着显著的优势。
以下是对MNIST数据集进行预处理和模型训练的代码:
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=64)
评估模型在测试数据上的表现:
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



