API
CLASS torch.optim.Optimizer(params, defaults)
参数 | 描述 |
---|
params (iterable) | an iterable of torch.Tensor s or dict s. Specifies what Tensors should be optimized. |
defaults (dict) | a dict containing default values of optimization options (used when a parameter group doesn’t specify them). |
方法 | 描述 |
---|
add_param_group(param_group) | |
load_state_dict(state_dict) | |
state_dict() | |
step(closure) | parameter update |
zero_grad() | Clears the gradients of all optimized torch.Tensor s |
CLASS torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
参数 | 描述 |
---|
params (iterable) | iterable of parameters to optimize or dicts defining parameter groups |
lr (float, optional) | learning rate (default: 1e-3) |
betas (Tuple[float, float], optional) | coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) |
eps (float, optional) | term added to the denominator to improve numerical stability (default: 1e-8) |
weight_decay (float, optional) | weight decay (L2 penalty) (default: 0) |
amsgrad (boolean, optional) | whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False) |
参考:
https://pytorch.org/docs/stable/optim.html