Problem Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute * Teleporting: FJ can move from any point X to the point 2 × X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Example Input
5 17
Example Output
4
题意:在一个数轴上,人在N位置,牛在K位置,人去找牛(人从 N到K),牛不动,人有两种走法,一种是+1或-1,另一种是在x位置,直接跳到2*x位置。(说明x 到x+1,x-1,2*x是连通的)
示例是 : 5 17
可以 从5跳到10,再从10到9,从9跳到18,从18到17,走4步;
也可以 5->4,4->8,8->16,16->17 都是4 步,用的步数最少;
分析:
当人的位置小于牛的位置,即n < k 时,可以进行+ 、-、 * ,因为通过这些都可以增大,而 n > k时只能进行 减 ,这样才能找到牛。
当找到牛的时候,输出所用的步数。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int book[500005];
struct node
{
int x;
int s;
}que[500005];
int main()
{
int n,k;
int head = 1;
int tail = 1;
scanf("%d%d",&n,&k);
que[head].x = que[tail].x = n;
que[tail++].s = 0;
book[n] = 1;
while(head < tail)
{
int m = que[head].x;
//找到牛
if(m == k)
{
printf("%d\n",que[head].s);
break;
}
//人的位置小于牛的
if(m <= k&&book[m-1]==0)
{
book[m-1]=1;
que[tail].x = m-1;
que[tail++].s = que[head].s+1;
}
if(m <= k && book[m+1]==0)
{
book[m+1]=1;
que[tail].x = m+1;
que[tail++].s = que[head].s+1;
}
if(m <= k&&book[m*2]==0)
{
book[m*2] = 1;
que[tail].x = m*2;
que[tail++].s = que[head].s+1;
}
//人的位置大于牛
if(m > k && book[m-1]==0)
{
book[m-1]=1;
que[tail].x = m-1;
que[tail++].s = que[head].s+1;
}
head ++ ;
}
return 0;
}
本文介绍了一个有趣的算法问题——如何在数轴上以最少步骤从一个起点到达另一个终点,可以通过步行或传送的方式移动。提供了详细的解决方案及代码实现。
540

被折叠的 条评论
为什么被折叠?



