[Paper note] Language Modeling with Gated Convolutional Networks

本文介绍了一种使用CNN构建的语言模型,并通过实验证明其在多项指标上优于传统的LSTM模型。实验中对比了两种模型在Google Billion Word及WikiText-103数据集上的表现,结果显示CNN模型不仅收敛速度快,而且参数量更少,运行效率更高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • paper
  • CNN beats LSTM in language model?

Model

Model
* Word embedding
* Hidden layers: hl(X)=(XW+b)σ(XV+c)
* : element-wise product
* W,Vk×m×n
* Note that the begin of the sequence is zero-padded by k/2
* The linear gate can alleviate vanishing gradient problem (can be seen as a multiplicative skip connection)
* Adaptive softmax

Experiment

  • Datasets: Google Billion Word (GBW), WikiText-103
  • Optimization: Nesterov’s momentum, gradient clipping (to 0.1), weight normalization
    • Can gain stable and fast convergence with large learning rate such as 1
  • Hyper-parameter search
  • Result
    • Speed: GCNN-22 compared with LSTM-2048 (units), better throughput and responsiveness
    • Complexity: GCNN-22 compared with LSTM-2048 (units), less parameter and FLOPs/token
    • Gating mechanism: GLU > (GTU (LSTM unit) <=> ReLU) > Tanh
    • Non-linear modeling: GLU > Linear > Bilinear
    • Network depth: the deep the better
    • Context: large context size brings lower test perplexity but returns diminish.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值