[Paper note] Pyramid Scene Parsing Network

本文介绍了一种基于金字塔池的场景解析方法,在多个基准数据集上取得了优秀的效果。该方法利用不同尺度的池化来捕获全局上下文信息,并通过辅助损失函数进一步提升模型性能。实验结果显示,在ADE20K、PASCAL VOC 2012和Cityscapes等数据集上的表现均优于同类方法。

Parsing overview

  • Datasets
  • FCN is the baseline model for deep learning based parsing
    • Research line 1: multi-scale feature ensembling
    • Research line 2: structure prediction
  • Some prior works use global image-level information for scene understanding

Intuition

  • FCN method suffers from mismatched relationship, confusion categories and inconspicuous classes
  • Global average pooling fuses different stuff in a single vector and may lose the spatial relation. Global context information along with sub-region context may be more helpful.

Model

Model

  • Pyramid pooling: bin size of 1x1, 2x2, 3x3, 6x6, both max and average pooling
  • Auxiliary loss in ResNet-101

Experiment

  • Datasets: ImageNet scene parsing (ADE20K), PASCAL VOC 2012, Cityscapes
  • Settings: poly learning rate, augmentation, momentum = 0.9 and weight decay = 0.0001.
  • Large cropsize can get good performance (consistant with our experiment in ResNet)
  • Batch size in batch normalization layer is important.
  • Ablation study of settings
    • Average pooling is better than max
    • Pyramid is better than global pooling
    • Dimension reduction after pooling and concatenate is helpful
  • Ablation study of auxiliary loss
    • \alpha = 0.4 yields best performance
  • Ablation study for ResNet depth
    • The deep the better
    • All ResNet is pre-trained on ImageNet
  • Experiment on PASCAL VOC 2012
    • 10,582, 1,449 and 1,456 images for training, validation and testing
    • Top accuracy on all classes w/o MS COCO pre-training, top on most classes w/ MS COCO pre-training
  • Cityscapes
    • 2,975, 500, and 1,525 for training, validation and testing, 19 categories containing both stuff and objects.
    • 20,000 coarsely annotated images, can be used for training.
    • Out-performs other methods with notable advantage (See project page for statistics)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值