Codeforces 557C Arthur and Table 【树状数组 + 二分】

这道编程题是关于如何计算使不稳定桌子变得稳定的最小能量消耗。题目要求找到使桌子最长腿的数量超过总腿数一半所需的最小代价。通过离散化腿的长度,使用树状数组和二分查找方法可以求解这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:Codeforces 557C Arthur and Table

C. Arthur and Table
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Arthur has bought a beautiful big table into his new flat. When he came home, Arthur noticed that the new table is unstable.

In total the table Arthur bought has n legs, the length of the i-th leg is li.

Arthur decided to make the table stable and remove some legs. For each of them Arthur determined number di — the amount of energy that he spends to remove the i-th leg.

A table with k legs is assumed to be stable if there are more than half legs of the maximum length. For example, to make a table with 5 legs stable, you need to make sure it has at least three (out of these five) legs of the maximum length. Also, a table with one leg is always stable and a table with two legs is stable if and only if they have the same lengths.

Your task is to help Arthur and count the minimum number of energy units Arthur should spend on making the table stable.

Input
The first line of the input contains integer n (1 ≤ n ≤ 105) — the initial number of legs in the table Arthur bought.

The second line of the input contains a sequence of n integers li (1 ≤ li ≤ 105), where li is equal to the length of the i-th leg of the table.

The third line of the input contains a sequence of n integers di (1 ≤ di ≤ 200), where di is the number of energy units that Arthur spends on removing the i-th leg off the table.

Output
Print a single integer — the minimum number of energy units that Arthur needs to spend in order to make the table stable.

Examples
input
2
1 5
3 2
output
2
input
3
2 4 4
1 1 1
output
0
input
6
2 2 1 1 3 3
4 3 5 5 2 1
output
8

题意:一个桌子有n条腿,桌子被认为是稳定的当且仅当最大高度的腿数超过一半。现在给出砍掉第i条腿的代价,问你最少需要多少代价使得桌子稳定。

思路:我们考虑最大高度为i时付出的代价,显然>i的腿都要砍掉。
记Count[i]为高度为i的腿数,剩余腿数为total。
当Count[i] > total / 2,直接代价就是 > i的所有腿的代价。
反之,我们需要从< i腿中去掉need = total - 2 * Count[i] + 1条腿。

我们可以以代价为限定 离散化所有的腿。
然后在高度< i的限制下插入符合条件的腿,用一个树状数组维护个数,一个维护代价,二分找出右端点R使得[1, R]里面插入的腿数 == need,然后最小代价就是[1, R]里面的代价和。

枚举高度,然后维护最小代价。时间复杂度O(n*logn+Max*logn*logn)。

AC代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#define CLR(a, b) memset(a, (b), sizeof(a))
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e5 + 10;
struct Node {
    int h, c, id;
};
Node num[MAXN];
bool cmp1(Node a, Node b) {
    return a.c != b.c ? a.c < b.c : a.h < b.h;
}
bool cmp(Node a, Node b) {
    if(a.h != b.h) return a.h < b.h;
    else if(a.c != b.c) return a.c < b.c;
    return a.id < b.id;
}
int lowbit(int x) {
    return x & (-x);
}
int n;
int C1[MAXN], C2[MAXN];
void Update(int x, int d) {
    while(x <= n) {
        C1[x] += 1;
        C2[x] += d;
        x += lowbit(x);
    }
}
int Sum(int x, int op) {
    int s1 = 0, s2 = 0;
    while(x > 0) {
        s1 += C1[x];
        s2 += C2[x];
        x -= lowbit(x);
    }
    if(op == 1) return s1;
    return s2;
}
int cost[MAXN], Count[MAXN];
int scost[MAXN], scount[MAXN];
int main()
{
    while(scanf("%d", &n) != EOF) {
        int Max = 0; CLR(cost, 0); CLR(Count, 0);
        for(int i = 1; i <= n; i++) {
            scanf("%d", &num[i].h);
            Max = max(Max, num[i].h);
            Count[num[i].h]++;
        }
        for(int i = 1; i <= n; i++) {
            scanf("%d", &num[i].c);
            cost[num[i].h] += num[i].c;
        }
        sort(num+1, num+n+1, cmp1);
        for(int i = 1; i <= n; i++) {
            num[i].id = i;
        }
        scost[0] = scount[0] = 0;
        for(int i = 1; i <= Max; i++) {
            scost[i] = scost[i-1] + cost[i];
            scount[i] = scount[i-1] + Count[i];
        }
        sort(num+1, num+n+1, cmp);
        int j = 1; CLR(C1, 0); CLR(C2, 0); int ans = INF;
        for(int i = 1; i <= Max; i++) {
            if(cost[i] == 0) continue;
            while(j <= n && num[j].h < i) {
                Update(num[j].id, num[j].c); j++;
            }
            int Tcost = scost[Max] - scost[i];
            int total = n - (scount[Max] - scount[i]);
            //cout << total << endl;
            if(Count[i] < total / 2 + 1) {
                int need = total - 2 * Count[i] + 1;
                //cout << need << endl;
                int R;
                int l = 1, r = n;
                while(r >= l) {
                    int mid = (l + r) >> 1;
                    if(Sum(mid, 1) >= need) {
                        R = mid;
                        r = mid - 1;
                    }
                    else {
                        l = mid + 1;
                    }
                }
                Tcost += Sum(R, 2);
            }
            //cout << Tcost << endl;
            ans = min(ans, Tcost);
        }
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值