题目:链接
思路:暴力,方法有很多。。。
说下我的写法——首先N最大为8,那么我们直接枚举在那些点建基电站。这里直接一个全排列就可以了,1代表建,0代表不建。我们把0的点存为a[],1的点存为b[],然后就是从b[]里面选若干个点引半径做圆 来覆盖a[]里面的所有点,只需要求出最小半径和即可。求最小半径和直接DFS就好了,在DFS的过程中维护b[]中每个点所引最大半径,最后求和。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <string>
#define CLR(a, b) memset(a, (b), sizeof(a))
using namespace std;
typedef long long LL;
const int MAXN = 1e3+10;
const int INF = 0x3f3f3f3f;
int N;
double x[10], y[10];
double Cs, Cr;
double Dis(int a, int b) {
return sqrt((x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]));
}
int S[10];
double use[10];
int a[10], ta;
int b[10], tb;
double sum;
void DFS(int pos)
{
if(pos == ta+1) {
double res = 0;
for(int i = 1; i <= N; i++) res += use[i];
sum = min(res, sum);
return ;
}
for(int j = 1; j <= tb; j++)
{
double d = Dis(b[j], a[pos]);
double val = use[j];
use[j] = max(use[j], d);
DFS(pos + 1);
use[j] = val;
}
}
double Solve(int cnt)
{
double res = Cs * cnt; ta = tb = 0;
for(int i = 1; i <= N; i++) {
if(S[i]) b[++tb] = i;
else a[++ta] = i;
use[i] = 0;
}
sum = 0;
if(cnt != N) {
sum = INF; DFS(1);
}
return res + sum * Cr;
}
int main()
{
int t; scanf("%d", &t);
while(t--)
{
scanf("%d%lf%lf", &N, &Cs, &Cr);
for(int i = 1; i <= N; i++)
scanf("%lf%lf", &x[i], &y[i]);
double ans = INF;
for(int num = 1; num <= N; num++)
{
CLR(S, 0);
for(int i = 1; i <= num; i++) S[i] = 1;
do {
ans = min(ans, Solve(num));
}while(prev_permutation(S+1, S+N+1));
}
printf("%.2lf\n", ans);
}
return 0;
}